
TEXT MINING, PT 3 DATA SOCIETY © 2017

DATA SOCIETY ®

The premiere data science training for professionals

“If you can’t explain it simply, you don’t understand it well enough.”
- Albert Einstein

TEXT MINING, PT 3 DATA SOCIETY © 2017

Which problems will you solve?
Objec&ves for this lecture:

1.  Create your own tokens

2.  Automate parts-of-speech taggers

3.  Define your own dic&onaries

1

TEXT MINING, PT 3 DATA SOCIETY © 2017

1.  Using a tagger

2.  Iden&fying syntac&c paGerns

3.  Using default dic&onaries

4.  Automa&ng tags

5.  Building and using taggers

2

Overview

TEXT MINING, PT 3 DATA SOCIETY © 2017

Categorizing and tagging words
•  Word classes (also known as lexical categories) are ways for us categorize

words for language processing tasks

•  The process of classifying words into their parts of speech (nouns, verbs,
adjec&ves, etc) and labeling them accordingly is known as part-of-speech
tagging or POS-tagging

•  We can do a simple analysis to automa&cally tag words

3

TEXT MINING, PT 3 DATA SOCIETY © 2017

Import nltk and word_tokenize
import nltk
from nltk import word_tokenize

What are the parts of speech of the sentence below?
text = word_tokenize("And now for something completely different")
nltk.pos_tag(text)

Using a tagger

4

Script

CC = coordina&ng conjunc&on
RB = adverb
IN = preposi&on
NN = noun
JJ = adjec&ve

If you want to look at the en&re list
of categoriza&ons, you can type in
nltk.help.upenn_tagset()
to see the full list

TEXT MINING, PT 3 DATA SOCIETY © 2017

What if we use homonyms (same word with a different meaning)?
text = word_tokenize("They refuse to permit us to obtain the refuse permit")
nltk.pos_tag(text)

Using a tagger

5

Script

The POS tagger was able to
dis&nguish between the different
meanings of "refuse" and "permit"!

TEXT MINING, PT 3 DATA SOCIETY © 2017

How can we identify words that are used in similar context?
First, we need to create the word list.
text = nltk.Text(word.lower() for word in nltk.corpus.brown.words())

text.similar('woman')
text.similar('bought')
text.similar('over')
text.similar('the')

Using a tagger

6

Script

The text.similar method takes the
word we input, finds all the contexts of that
word, and then finds words that appear in
the same context

Mostly nouns

Mostly verbs

Mostly proposi&ons
Parts of speech can help us understand the
word distribu4on for analysis

TEXT MINING, PT 3 DATA SOCIETY © 2017

Tagged tokens
•  A tagged token is represented by a tuple (a sequence of elements) where the

first element is the word, and the second element is the tag

7

(fly / NN)

Word Tag

We can create one of these special tuples from the standard string
representation of a tagged token, using the function str2tuple():
tagged_token = nltk.tag.str2tuple('fly/NN')
tagged_token
tagged_token[0]
tagged_token[1]

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

We can create a list of tokens manually
sent = ''' The/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/NN of/IN
other/AP topics/NNS ,/, AMONG/IN them/PPO the/AT Atlanta/NP and/CC Fulton/NP-tl
County/NN-tl purchasing/VBG departments/NNS which/WDT it/PPS said/VBD ``/`` ARE/
BER well/QL operated/VBN and/CC follow/VB generally/RB accepted/VBN practices/
NNS which/WDT inure/VB to/IN the/AT best/JJT interest/NN of/IN both/ABX
governments/NNS ''/'' ./. '''

[nltk.tag.str2tuple(t) for t in sent.split()]

Crea=ng tagged tokens

8

Script

And here is our list
of tagged tokens!

TEXT MINING, PT 3 DATA SOCIETY © 2017

Built-in taggers
•  Several corpora in NLTK have been tagged already

9

We can use the tagged_words() syntax to view the tags of the words.
nltk.corpus.brown.tagged_words()

The universal tagset contains different terms for parts of speech.
nltk.corpus.brown.tagged_words(tagset = 'universal')

If a corpus has tagged text, you'll be able to use the tagged_words() method.
print(nltk.corpus.nps_chat.tagged_words())

Script

You can learn more about the universal tagset here:
hGps://github.com/slavpetrov/universal-pos-tags

TEXT MINING, PT 3 DATA SOCIETY © 2017

Universal POS tags

10

Tag Meaning English example
ADJ adjecEve new, good, high, special, big, local

ADP adposiEon on, of, at, with, by, into, under

ADV adverb really, already, s6ll, early, now

CONJ conjuncEon and, or, but, if, while, although

DET determiner, arEcle the, a, some, most, every, no, which

NOUN noun year, home, costs, 6me, Africa

NUM numeral twenty-four, fourth, 1991, 14:24

PRT parEcle at, on, out, over per, that, up, with

PRON pronoun he, their, her, its, my, I, us

VERB verb is, say, told, given, playing, would

. punctuaEon marks . , ; !

X other ersatz, esprit, dunno, gr8, univeristy

TEXT MINING, PT 3 DATA SOCIETY © 2017

Tabula=ng tags
•  Let's see which of these tags are most common in the news

11

Make sure to import the Brown corpus first.
from nltk.corpus import brown

Now we'll pull all the words in the "news" category with a universal tag.
brown_news_tagged = brown.tagged_words(categories = 'news', tagset = 'universal')

We'll use the FreqDist() syntax from nltk to calculate
the frequency distribution of the tags.
tag_fd = nltk.FreqDist(tag for (word, tag) in brown_news_tagged)

What are the most common parts of speech?
tag_fd.most_common()

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Exercise ,me!

12

TEXT MINING, PT 3 DATA SOCIETY © 2017

1.  Using a tagger

2.  Iden&fying syntac&c paGerns

3.  Using default dic&onaries

4.  Building and using taggers

13

Overview

TEXT MINING, PT 3 DATA SOCIETY © 2017

Syntac=c paCerns: nouns
•  What parts of speech typically appear before a noun?

14

Let's create bigrams with the bigrams() syntax from NLTK.
word_tag_pairs = nltk.bigrams(brown_news_tagged)

Now we will identify the words that appear before a noun in the bigrams
we just created.
noun_preceders = [a[1] for (a, b) in word_tag_pairs if b[1] == 'NOUN']

We'll use the FreqDist() method on the word list we
just created to see which words occur most often before
fdist = nltk.FreqDist(noun_preceders)

Let's pull out only the part of speech term
(not the frequency).
[tag for (tag, _) in fdist.most_common()]

Script

Looks like nouns and
determiners are the top two
parts of speech before nouns!

TEXT MINING, PT 3 DATA SOCIETY © 2017

Syntac=c paCerns: verbs
•  What are the most common verbs in news?

15

Let's create bigrams with the bigrams() syntax from NLTK.
word_tag_fd = nltk.FreqDist(brown_news_tagged)

Now we will identify the most common words that are tagged as verbs in the
frequency distribution.
top_verbs = [wt[0] for (wt, _) in word_tag_fd.most_common() if wt[1] == 'VERB']

We can pull the top terms from the 'top_verbs variable.
top_verbs[:10]

Script

Here are the top verbs in news

TEXT MINING, PT 3 DATA SOCIETY © 2017

Condi=onal frequency distribu=on
•  Since words and tags are paired, we can treat the word as a condi&on and the

tag as an event

16

First, we'll set up the Conditional Frequency Distribution
cfd1 = nltk.ConditionalFreqDist(brown_news_tagged)

Let's look at some words that have multiple meanings to see how they're most
commonly used.
cfd1['yield'].most_common()

cfd1['cut'].most_common()

Script

Remember, Condi&onal Frequency
Distribu&on shows the distribu&on across
mul&ple variables – in this case, it's tallying up
the word across the different parts of speech

TEXT MINING, PT 3 DATA SOCIETY © 2017

Condi=onal frequency distribu=on
•  We can also reverse it and set the tags as the condi&ons and the word as the

event so we can search by part of speech.

17

First, we'll set up the Conditional Frequency Distribution
brown_news_tagged_1 = brown.tagged_words(categories = 'news')

cfd2 = nltk.ConditionalFreqDist((tag, word) for (word, tag)

 in brown_news_tagged_1)

We can pull the top ten terms that
are tagged as "verb past participle"
list(cfd2['VBN'])[:10]

Script

Here we're switching the
tags and the words so we
can search by the tag

TEXT MINING, PT 3 DATA SOCIETY © 2017

Condi=onal frequency distribu=on
•  To clarify the dis&nc&on between VBD (past tense) and VBN (past par&ciple),

let's find words which can be both VBD and VBN, and see surrounding text

18

First, we'll create the list where verbs are labeled as both VBD and VBN
[w for w in cfd1.conditions() if 'VBD' in cfd1[w] and 'VBN' in cfd1[w]]

Let's shorten the variable to 'bnt' to make it easier to work with.
bnt = brown_news_tagged_1

Now, we can look at 'kicked' labeled as VBD and
pull out the indexed words before and after it
to see the words and parts of speech around it.
idx1 = bnt.index(('kicked', 'VBD'))
bnt[idx1 – 4: idx1 + 1]

Let's see if the words are different for VBN.
idx2 = bnt.index(('kicked', 'VBN'))
bnt[idx2 - 4: idx2 + 1]

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Exercise ,me!

19

TEXT MINING, PT 3 DATA SOCIETY © 2017

1.  Using a tagger

2.  Iden&fying syntac&c paGerns

3.  Using default dic&onaries

4.  Automa&ng tags

5.  Building and using taggers

20

Overview

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries
•  Normally, we get errors when we try to access a key in a dic&onary, but we can

use a special dic&onary to create new entries

•  defaultdict automa&cally creates an entry for this new key and give it a default
value, such as 0 or the empty list

•  In order to use it, we have to supply a parameter which can be used to create
the default value, e.g. int, float, str, list, dict, tuple

21

TEXT MINING, PT 3 DATA SOCIETY © 2017

Let's import defaultdict.
from collections import defaultdict

Set the defaultdict to accept integers as the parameter, and name it 'frequency'.
frequency = defaultdict(int)

We can define the term 'colorless' to have the parameter '4'. We can check it
by running it – what happens when we enter a new term that's not defined?
frequency['colorless'] = 4
frequency['colorless']
frequency['ideas']

Set the defaultdict to set lists as
the parameter, and name it 'pos'.
pos = defaultdict(list)
pos['sleep'] = ['NOUN', 'VERB']
pos['ideas']

Default dic=onaries

22

Script

Returns an integer of zero

Returns an empty list

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries
•  We can set a default value for new entries in our dic&onary

23

We first define the function that tells us if the POS is unknown,
label it as a noun.
def POS():
 return 'NOUN'
POS()

Let's set our default dictionary to the function
that will return a noun. Now, if we put in a
non-existent entry, it's automatically added.
pos = defaultdict(POS)
pos['colorless'] = 'ADJ'
pos['blog']

We can look at the list of
items from the dictionary.
list(pos.items())

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries
•  Many language processing tasks, such as tagging, have trouble iden&fying

words that only appear once in a text (also known as hapaxes)

•  They can perform beGer with a fixed vocabulary and a guarantee that no new
words will appear.

•  We can create a token, UNK, as a special 'out of vocabulary' token and assign it
to all the low-frequency words

24

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries
•  We can set a default value for new entries in our dic&onary

25

Let's read in "Alice in Wonderland" and save it as 'alice'.
alice = nltk.corpus.gutenberg.words('carroll-alice.txt')

We'll calculate the Frequency Distribution of words, and then subset out the
1000 most common words.
vocab = nltk.FreqDist(alice)
v1000 = [word for (word, _) in vocab.most_common(1000)]

Let's check the first 20 words of the set we just created.
v1000[:20]

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries
•  We can set a default value for new entries in our dic&onary

26

We need to define a new function to automatically return the special
token that we can define – let's call it 'UNK'.
def default_POS():
 return 'UNK'

Set the defaultdict to return our special token and label it 'mapping'. Then,
we will map 'v' to itself to assign
mapping = defaultdict(default_POS)
for v in v1000:
 mapping[v] = v
mapping

Now, we'll use the mapping syntax again, but this time for all of Alice
– now it will assign 'UNK' to any word that is not in the top 1000 common words.
alice2 = [mapping[v] for v in alice]
alice2[:100]

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Exercise ,me!

27

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries
•  We can add new occurrences incrementally to dic&onaries

28

First, set the default dictionary for integers, and import brown.
counts = defaultdict(int)
from nltk.corpus import brown

If the tag hasn't been seen before, it will have a zero count by default. Each time
we encounter a tag, we increment its count using the += operator.
for (word, tag) in brown.tagged_words(categories = 'news', tagset = 'universal'):

 counts[tag] += 1

counts['NOUN']

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries
•  ItemgeGer is important in helping us sort a dic&onary by its values

29

First, import itemgetter.
from operator import itemgetter

sorted(counts.items(), key = itemgetter(1), reverse = True)

Let's set pair equal to a tuple and look at how we can pull out a particular
object from the tuple.
pair = ('NP', 8336)
pair[1]

itemgetter(1)(pair)

Script

Items to sort – a list of tuples
with POS tag and frequency

Returns a callable object
that fetches an item

Tells us that the item
should be returned in
decreasing order

TEXT MINING, PT 3 DATA SOCIETY © 2017

Exercise ,me!

30

TEXT MINING, PT 3 DATA SOCIETY © 2017

1.  Using a tagger

2.  Iden&fying syntac&c paGerns

3.  Using default dic&onaries

4.  Automa&ng tags

5.  Building and using taggers

31

Overview

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries
•  Let's review the concept of default dic&onaries:

32

my_dictionary = defaultdict(function to create default value)

for item in sequence:
 my_dictionary[item_key] is updated with information about item

Sets the default value

Cycle through the data set
and update informa&on

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries
•  Let's index words according to their last two leGers.

33

First, set 'last_letters' as a default dictionary for lists
last_letters = defaultdict(list)

Set the wordlist to the NLTK corpus in English
words = nltk.corpus.words.words('en')

Build the for loop where the key is equal to the last
two letters, and then, we'll append the words
to the matching key (which is the last two letters)
for word in words:
 key = word[-2:]
 last_letters[key].append(word)

Let's try out our function, and pull the top ten terms!
last_letters['ly'][:10]
last_letters['zy'][:10]

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default dic=onaries: anagrams
•  Let's index words according to their last two leGers.

34

First, set 'last_letters' as a default dictionary for lists.
anagrams = defaultdict(list)

Let's set a for loop, where the key is equal the sorted letters in a word, and
the event is equal to the word itself – this way, for every word that has the
same letters, it will have the same key.
for word in words:
 key = ''.join(sorted(word))
 anagrams[key].append(word)

Let's test it out.
anagrams['aeilnrt']

Note: this will only work if we put
the letters in alphabetical order!

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Exercise ,me!

35

TEXT MINING, PT 3 DATA SOCIETY © 2017

Default taggers
•  Let's explore how to automa&cally add POS tags to text
•  Since parts of speech can depend on the context of the sentence, we'll need to

work with data at the sentence level

36

First, set 'last_letters' as a default dictionary for lists.
from nltk.corpus import brown

We'll set up the regular sentences
and the tagged sentences to compare them.
brown_tagged_sents = brown.tagged_sents(categories = 'news')
brown_sents = brown.sents(categories = 'news')

Now we will see which tag is the most common in the text.
tags = [tag for (word, tag) in brown.tagged_words(categories = 'news')]
nltk.FreqDist(tags).max()
NN

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Now we can create a tagger that will tag all words as 'NN'.
raw = 'I do not like green eggs and ham, I do not like them Sam I am!'

We'll tokenize the words in the sentence and then use the default tagger to 'NN'.
tokens = word_tokenize(raw)
default_tagger = nltk.DefaultTagger('NN')

Let's check to make sure it worked.
default_tagger.tag(tokens)

Now we can evaluate the method
default_tagger.evaluate(brown_tagged_sents)

Default taggers

37

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

1.  Using a tagger

2.  Iden&fying syntac&c paGerns

3.  Using default dic&onaries

4.  Automa&ng tags

5.  Building and using taggers

38

Overview

TEXT MINING, PT 3 DATA SOCIETY © 2017

Lookup taggers
•  Since a lot of high frequency words don't have the NN tag, let's find the most

frequent words and store their tag so that we can refer to it later.

39

First we'll get the frequency distribution and the conditional
frequency distribution for the Brown corpora categorized as 'news'.
fd = nltk.FreqDist(brown.words(categories = 'news'))
cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories = 'news'))

What does cfd look like?
cfd

Now we will store the most common words
from the Brown corpus.
corpus.most_freq_words = fd.most_common(100)

Script

You can see
the mul&ple
tags for each
word

TEXT MINING, PT 3 DATA SOCIETY © 2017

Lookup taggers
•  Since a lot of high frequency words don't have the NN tag, let's find the most

frequent words and store their tag so that we can refer to it later.

40

We'll set 'likely_tags' equal to the max count of tags for the words that
are in the 'most_freq_words' data - remember, since some of the words have
multiple parts of speech, we only want to take the most frequent one.
likely_tags = dict((word, cfd[word].max()) for (word, _) in most_freq_words)

Now, we can use the UnigramTagger() method and set it as the baseline tagger.
We can see how much more accurate we are if we tag the sentences with
the lookup tagger.
baseline_tagger = nltk.UnigramTagger(model = likely_tags)
baseline_tagger.evaluate(brown_tagged_sents)

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Lookup taggers
•  Since a lot of high frequency words don't have the NN tag, let's find the most

frequent words and store their tag so that we can refer to it later.

41

Let's test this out on untagged input text:
sent = brown.sents(categories = 'news')[3]
baseline_tagger.tag(sent)

Script

A lot of the words have
been classified as 'None'
because they aren't in the
100 most frequent words

TEXT MINING, PT 3 DATA SOCIETY © 2017

Lookup taggers
•  We want to create a method where we want to lookup if the word is in the

most frequent words, then if it isn't, assign it an 'NN' tag.

42

This is what that method we described would look like – if the word
doesn't appear in the 'likely_tags' set, it will be assigned an 'NN' tag.
baseline_tagger = nltk.UnigramTagger(model = likely_tags,
 backoff = nltk.DefaultTagger('NN'))

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Lookup taggers
•  Let's put this all together and write a program to evaluate lookup taggers that

have a range of sizes

43

def performance(cfd, wordlist):
 lt = dict((word, cfd[word].max()) for word in wordlist)
 baseline_tagger = nltk.UnigramTagger(model = lt, backoff = nltk.DefaultTagger('NN'))
 return baseline_tagger.evaluate(brown.tagged_sents(categories = 'news'))

def display():
 import pylab
 word_freqs = nltk.FreqDist(brown.words(categories = 'news')).most_common()
 words_by_freq = [w for (w, _) in word_freqs]
 cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
 sizes = 2 ** pylab.arange(15)
 perfs = [performance(cfd, words_by_freq[:size]) for size in sizes]
 pylab.plot(sizes, perfs, '-bo')
 pylab.title('Lookup Tagger Performance with Varying Model Size')
 pylab.xlabel('Model Size')
 pylab.ylabel('Performance')
 pylab.show()

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Lookup taggers

44

display() Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Exercise ,me!

45

TEXT MINING, PT 3 DATA SOCIETY © 2017

Unigram taggers
•  A unigram tagger is based on a simple sta&s&cal algorithm based on the

likelihood of the tag for a par&cular token.

46

Let's import brown and set up the tagged sentences and regular sentences
word lists. Then, we'll train the unigram tagger, use it to tag a sentence,
and evaluate it.
from nltk.corpus import brown

brown_tagged_sents = brown.tagged_sents(categories = 'news')
brown_sents = brown.sents(categories = 'news')

How does the unigram tagger perform on the sentences of 2007?
unigram_tagger = nltk.UnigramTagger(brown_tagged_sents)
unigram_tagger.tag(brown_sents[2007])

unigram_tagger.evaluate(brown_tagged_sents)

Script

TEXT MINING, PT 3 DATA SOCIETY © 2017

Separa=ng training and tes=ng data
•  In order to make sure that our model is generalizable to new data, we have to

train and test it. Let's split the data to train 90% of it, and test 10% of it.

47

We can split up the data to 90% of the tagged sentences to train.
size = int(len(brown_tagged_sents) * 0.9)
size

Now, we will label a data set 'train_sents' and 'test_sents' to train the model.
train_sents = brown_tagged_sents[:size]
test_sents = brown_tagged_sents[size:]

We'll train our model with UnigramTagger, and then test it with 'evaluate'.
unigram_tagger = nltk.UnigramTagger(train_sents)
unigram_tagger.evaluate(test_sents)

Script

Even though the performance is worse,
we have a beGer picture about the
usefulness of this tagger

