DATA SOCIETY"

The premiere data science training for professionals

“One should look for what is and not what he thinks should be.”

- Albert Einstein

SQL +bWH'0N . DATA SOCIETY © 2017

Objectives

1. Create a database with MAMP and phpMyAdmin

2. Connect your database to a Python script
3. Run basic SQL queries on a sample data set

4. Use an object relational mapper (ORM) for larger data sets

sQL +b“H‘0N v DATA SOCIETY © 2017 1

DATA SOCIETY © 2017 1

Outline

1. Overview of SQL & importing data

2. Connecting to your database in Python
3. Adjusting tables and foreign keys

4. Creating tables in a database

5. Performing basic statements in SQL

6. Performing UNIONS and JOINS in SQL

/. Advanced: using ORMs for larger databases

SQL + PYTHON DATA SOCIETY © 2017 2

What is SQL?

* SOL is short for Structured Query Language. It is the standard language used to
communicate with most relational databases

— SQL queries are sent to a database to ask it to perform a specific task with the data it
stores

* Microsoft SQL Server is a type of relational database

;ﬁ VS Excel

Mlcmsoh'&; -
SQL Server Mcrosan®
Access
sQL + PY?HON DATA SOCIETY © 2017 3

DATA SOCIETY © 2017 2

Goals for Intro to SQL

* Learn to Import/Export, manipulate, combine, and aggregate data sets using
MySQL

* These lessons are structured with the intent of using SQL server as an
intermediary to store and aggregate data as displayed in the image below

>
Upload

Data Storage

Upload

Source Data

Export / Import
T T —

Analysis

& Aggregation [FExport/ Import:“>
for Analysis
sQL + P'?'T'HON DATA SOCIETY © 2017
Why use SQL?
Great Average Limited
saL Access Excel

Best option for analyzing large data sets (over
1 million records)

Data Size Limits

Handles larger data sets than Excel, but can
be limited by memory and space of local
computers

Limited to 1,048,576 records for data sets

Reporting Data built-in reporting and visualization capabilities

reporting, but more limited set of analysis
functions

Manipulating Multiple queries can easily be combined to Querying capabilities similar to SQL with less Combining data sets can be difficult and
Data coerce data from multiple data sets flexibility and capabilities prone to manual and formula errors
Analyzing / Limited built-in analysis functions and lack of Built in form and report capabilities for easy Many built in analysis functions,

visualizations, and formatting for easy
modeling and reporting

Speed Faster Processing

Slower processing

Slower Processing

Compatible with most visualization, business
intelligence, and statistical analysis platforms

Compatibility

Compatible with many visualization, business
intelligence, and statistical analysis platforms

Compatible with most visualization, business
intelligence, and statistical analysis platforms

SQL Queries create repeatable and auditable
analysis processes that can be clearly
commented

Quality Control

Access Queries also create repeatable
processes, but are often less transparent than
SQL queries

Excel Analyses are harder to replicate due to
manual steps that can be difficult to audit

Can be easy to learn for people without a

Learning Curve
programming background

Can be easy to learn for people without a
programming background

Easy to learn for any analyst

SQL + PYTHON

DATA SOCIETY © 2017

DATA SOCIETY © 2017

Outline

1. Overview of SQL & importing data

2. Connecting to your database in Python

3. Adjusting tables and foreign keys

4. Creating tables in a database

5. Performing basic statements in SQL

6. Performing UNIONS and JOINS in SQL

/. Advanced: using ORMs for larger databases

SQL + PYTHON DATA SOCIETY © 2017 6

Download install file

* Go to https://dev.mysgl.com/downloads/workbench/
— Notice the section called "MySQL Workbench Windows Prerequisites.” You may need to
come back to this page, so keep it open.

— Go to the bottom of the page and click the
Download button.

Begin Your Download
mysql-workbench-community-6.3,9-05x-x86_64.dmg

Login Now or Sign Up for a free account.
£ Oracla Web Account pravides ysu with the folowing agvantages:
. Fast a0cuss 10 MySQL 30Nware dimniasds
* You will be asked to create an Oracle Web AR s A Pt
Post messages in the MySQL Discussion Fansms.

account in order to proceed. You can click on P e et
"No thanks, just start my download."

MySGLcom I Lsing Oracke S$0 far suthentication. 1f you alresdy have an Oracle
Wish accoure, chck the Lagn ink. Otherwise, you can signup for a free account by
<licking the Sign Up link and following the instructiona.

No thanks, jest start my dewnload,

SQLEE PYTHON DATA SOCIETY © 2017 7

DATA SOCIETY © 2017 4

Check prerequisites

* Double click on the downloaded .msi file to begin installation of MySQL Workbench.

* You may receive a warning that you need either Visual C++ and / or .NET. If so, go
back to the MySQL website “Prerequisite” section and download the appropriate
requirement(s).

— If installing Visual C++, choose the x64 version (shown below).
* Once the prerequisites are met, re-launch the Workbench installer.

Choose the download you want
[v e -
Dewrbcnd Sumreary

0@

sQL + PYTHON DATA SOCIETY © 2017 8

Run installer

{8 My5QL Workbench 6.3 CE - Setup Wizard X

Welcome to the Setup Wizard for MySQL
Workbench 6.3 CE

* Click through the installation guide:
— Install location: Keep default
— Setup Type: “Complete”
— Confirmation screen: Click “Install”

* When finished, you can check the
box to launch MySQL Workbench,
and click Finish.

* MySQL Workbench will open.

The Setup Wizard will install version 6.3.9 on your computer, To
continue, didk Next.

WARNING: This peogram is protected by copyright lew and
Internationul trecties.

sQL + PYTHON DATA SOCIETY © 2017 9

DATA SOCIETY © 2017 5

Connect to your database server

Now we will set up MySQL Workbench to connect to our database server. Make sure
you have completed the MAMP installation steps before attempting this part.

* Start MAMP Servers.
* Go to Preferences > Ports and take note of the MySQL Port number (probably 3306).

- X © 114 Preferences B
Star/Stop | Ports | PHP | Web Server | About MAMP. i

© mamp

Apacrs Sanver B

®IMAMP 7 (- e

manage your websites locally Nginx port: 20 (1-65536}
a @ (!) Set MAMP ports to default
Preferences... Open start page Stop Servers | Set Web & MySQL ports to 80 & 3306 ‘ |
o] o] | |
Quit | [Ty MAMP PRO [T ! T Ty MAMP 7RO
SQL + PYTHON DATA SOCIETY © 2017 10

Connect to your database server

* Open http://localhost/phpMyAdmin/ in your browser and go to User Accounts > Add
User Account.

1 bt {loabens g % S s
€ D owhomtoMAdni € Qs T8 480 =
B nostasted @ D ated & Priten couss 10

ohoMuAdmin | ISRt
o [re— e ——— ————
Racert Fawebo _] . — —
4w

e o y - » Servet: nabont vis TP
4 8 900 CENOn SOAKI 44 TR urkode_ Krestioaey
Eprp— = Borver vrsion, 48 34y - MySOL ComTAry Sow

G

* o mwl I
B e e o
=t T ——

e « Servechased: UTF-B inkads (480)

P & i - B 3

<Rl @,
P 3
© PO e sy o § mtnbrs
+ P 145
sQL + PYTHON DATA SOCIETY © 2017 11

DATA SOCIETY © 2017 6

Connect to your database server

 Fill out the information as shown below. Create a user name and password. The host name
should be “localhost.” You can “Check all” for privileges.

» Leave SSL option to “Require None”

* Press the “Go” button at the bottom right to complete the new user creation. You have just
made yourself a superuser on localhost server!

Outatase o saes accourn
Add user account

7} Conma (Wadae wif) herts serre a1ed grerd] ricbigem.

21 Gt d rwhgen o itk e Lowerarren, Sl

Logm information
— e
Uses et fiekd: »| ta_anno
it TS e e
PaSAWONS: | o taxt tekd: v esessesacarnecs Sngh mm—ctoc) |
BEIE O ree——— -
Autenticaion Pugn e —ps— -
Gananils paaswod: prem— :
sQL + PYTHON DATA SOCIETY © 2017 12
Connect to your database server
« Go back to Workbench and click the “+” icon next to “MySQL Connections” to
connect to your database server with Workbench.
Welcome to MySQL Workbench
MySQL Workbench is the official graphical user interface (GUI) tool for MySQL. It allows you to design,
create and browse your database schemnas, work with database objects and insert data as well as
design and run SQL queries 1o work with stored data. You can also migrate schemas and data from other
database vendors to your MySQL database.
MySQL [onnections@
sQL + PYTHON DATA SOCIETY © 2017 13

DATA SOCIETY © 2017 /

Connect to your database server

* Name the connection “myserver,” enter | @ s s coecon - o X
“localhost” for host name, your Covectrome: o P b s
username, and your MySQL port Comectn et [2mdar (71%) | e 1 e b o 1 e s

. Paaneters SR Adverved
number you checked in MAMP T R
(probably 3306). ——————) ihceraes

 If you want Workbench to store your Pt | et e The s e Whbe st

password, you can click the “Store in Dot sens T chena o e et Leme

henk 10 safect i later.

Vault” button, and enter the password
you created in the previous step.

* Make sure the connection works by
clicking “Test Connection” in the lower
right of the window. After entering the

password, it should say “Successfully i He e
made the MySQL Connection.”
» Click Ok, to create the connection.
sQL + PYTHON DATA SOCIETY © 2017 14

Connect to your database server

* Double click on your new connection to open it.

Welcome to MySQL Workbench

MySQL Workbench Is the official graphical user interface (GUT) tool for MySQL it allows you to design,
areate and browse your database schemas, work with database cbjects and insert data as well as
design and run SQL queries o work with stored data. You can also migrate schemas and data from other
database vendors to your MySQL database.

MySQL Connections @ ® q

myserver

1 tnns
secaho 3N

sQL + PYTHON DATA SOCIETY © 2017 15

DATA SOCIETY © 2017 8

Connect to your database server

W45t Workbendh

* You should see a list of “schemas” at o i

Ele Est Vew ooy Detbase Seow Jocks Sowteg Help

the left, which should be the same as
those displayed on the left-hand panel
of phpMyAdmin.

* The middle panel of the screen should
be a blank query window. (If not, click
the +SQL (&")) icon under the File

[——

men U) Query output
» Enter the example query shown here,
and then press the lightning bolt icon e g
to execute it. 3 =N QP
: ::;:"“ b 1 165310 ssiect "Hals SOLT an welcars_essage LT &, 1000
* You've run your first SQL query! e
sQL + PY#HON DATA SOCIETY © 2017 16

Outline

1. Overview of SQL & importing data

2. Connecting to your database in Python

3. Adjusting tables and foreign keys

4. Creating tables in a database
5. Performing basic statements in SQL
6. Performing UNIONS and JOINS in SQL

/. Advanced: using ORMs for larger databases

SQLEE PYTHON DATA SOCIETY © 2017 17

DATA SOCIETY © 2017 9

Intro to relational databases

* What is a relational database?
— Relational databases store data in the form of tables that can be related to one another
based on common attributes in the columns and rows of those tables
— SQL Queries can leverage these relationships to rearrange the data stored in database
tables

. Analysis
Business .

« Business Name
¢ Industry

« Contact Name
* Phone Number
* Account Balance

» Contact ID » Business ID
« Contact Name Accounts ¢ Industry
* SSN * Business Name

* Phone Number « Contact ID
 Business ID

* Account Number
« Account Balance

SQL + PYTHON . DATA SOCIETY © 2017

18

SQL Server general components

* Servers ———> ¢ Server - database servers are programs
that provides database services to other
computer programs

_|—> « Database - is a container of data/

1 » Databases information organized into tables (and
J L/ other structures) so that they can be
easily managed and accessed back in
same fashion.

—> + Table - data stored in a tabular format
+ Tables with rows of named columns

SQLEE PYTHON . DATA SOCIETY © 2017

19

DATA SOCIETY © 2017

10

Creating a database

* First, go to http://localhost/phpMyAdmin/

phpMiytidmin
ABEODSH
Recent Favorites

4 Now
rii@mnnm_ma
\}&mm‘

L myurav

rﬁ,ﬁ performance_schema

|, Server: localhost:3306
| (@ Databases 73 SOL @ Status z5 User

& Export [Import 92 Settings

4 Databases
L Create database
Jatabasa name Collation Create
Database - Collation Action
Information_schema u=tu_general ci g Check privileges
© mysal ucte_general ot g3 Check privileges
~ myurav ut2e general ci g Check privileges
performance_schema wef8_gesezal el gl Check privileges
Total: 4 stf8_genecal_ci
e Checkal With selected;] Dree

(§) Note: Enabling the databasa atatistics here might cause heavy tratfic betwaan the web server and the MySQL ser|

+ Enable statistics

sQL + PYTHON DATA SOCIETY © 2017 20
Creating a database
* Under "Create database", type in 'familydb', and click "Create"
p h p . Server: localhost:3306
ﬁ:’gg:’?’n i Databases 7 SQL @ Status gb User accounts % EX 2 import §4 Setti Replication
Rocont Favoritos & Databases
- & Create database @
_IA&N"' familydy > Collation k) Create
> f@information_schema ——————
o @ mysal Database « Collation Action \
=& myurav Information_schema utf8 general c: &3 Check privileges .
& performance_schema ysql aeenceneraies gy Creckprvioges: Click "Create" to create
myurav wfn_cenerel e g Checkpivileges the new database
pertormance schema utfd general ci 55 Check privileges
Total: 4 uten_general ob
A Check all With selactas: [Orop.
G) Note: Enabling the database stasstics here might cause heavy traffic between the web server and the MySOL sen|
« Enable statistics
sQL + PYTHON DATA SOCIETY © 2017 21

DATA SOCIETY © 2017

11

Creating a database

* You should see the new database on the left-hand side
phpMyAdmin 5™ e

| £ Structure M SQL , Search (i Query i Export Ji Import %8 = Privi

AEQDY 2
Recent Favorites () No tables found in database.
= ~ [Create tabl
Name: Number of columns: 4
t n_schema
—{mmysal
_{amyurav

‘.L@wmmamo_schm

Don't worry if there are no tables
- we'll add them next!

SQL + PYTHON DATA SOCIETY © 2017

22

Populating a database

In order to practice SQL queries, you will need to run the

familydb.py file in the 'family' folder. Please refer to the appendix for
more detailed information about building SQL tables in Python.

sQL + PYTHON DATA SOCIETY © 2017

23

DATA SOCIETY © 2017

12

Connecting to a database

) ‘ .) . familydb.py
First, import the MySQL connector library if you haven't already.

import mysqgl.connector

Then, connect to an existing database:

dbconn = mysqgl.connector.connect (user="MYUSERNAME',
password="",
host='127.0.0.1",
database="familydb") i

1. Type in your username

2. Leave blank if you didn't
use a password

Type in the local host
Type in the database name

Make sure your Spyder working directory is set to the ‘family’
folder to pull data from it - then run the familydb.py file

‘ ') {UsersfiohryCesktop/Week2/| - Using SQL with Python/famity . = ’

) e |
® souce Comsce [Obisct PR

sQL + PYTHON DATA SOCIETY © 2017 24
Running SQL in Python
| 7 familydb.py
The dbconn variable has a MySQLConnection type. This object holds
the connection to the database. To run commands or SELECT statements,
we need to create cursor object from this connection:
cur = dbconn.cursor ()
The cursor allows us to run SQL statements with the execute command:
cur.execute ('select * from person')
cur.fetchall ()
To select the first result, type:
cur.fetchone ()
To select a number of results, type: 'n' stands for the number
cur.fetchmany (n) < of results you want
If you execute a statement that generates a result, you must fetch the results before executing another
statement. If you don't, you will see the error: InternalError: Unread result found.
sQL + PYTHON DATA SOCIETY © 2017 25

DATA SOCIETY © 2017

13

commit() for database operations

; o) . .) familydb.py
In addition to retrieving data, we can also run database operations.

These operations will change something about the database.
cur.execute ('DROP TABLE family')

However, the DROP command is "pending" until we run commit ().
dbconn.commit () < This is a method of dbconn, not cur

If you do not run commit(), the changes will be 'rolled back'
once the session is ended.

SQL + PYTHON DATA SOCIETY © 2017

26

Relational vs non-relational databases

* Relational database: consists of various tables that Relational
have explicit relationships to each other =
— Uses less disk space, but needs a schema (roadmap) for the

tables
— Uses SQL to query data, edit it, and rearrange it

« Non-relational databases (NoSQL): document- Key-Value Column-Family
oriented databases with non-structured data that isn't - [T
necessarily categorized into fields T S
— Takes up more storage than relational databases, but is Graph

becoming more popular given the decreasing cost of iy Dosat
oq| P b
storage “, & ® Q
— Simpler and faster queries Yso® o00
@000

Images from http://bigdata.iexpertify.com/wp-content/uploads/2013/09/NoSQL.jpg

sQL + PYTHON DATA SOCIETY © 2017

27

DATA SOCIETY © 2017

14

MySQL syntax

<

S

"

)
VA

XS

« MySQL is just one of many different database @)
management software products on the market. i‘g
Others include Microsoft SQL Server, Oracle,

PostgreSQL, DB2, Teradata, and SQLite. PostgreSAL— SQL Server

* Most of what we show you here for MySQL will work
with a different database management system, but
possibly with a slight change to syntax.

* We will be using the MySQL Connector library for —

Python /SQLTEB

sQL + PYTHON DATA SOCIETY © 2017 28
» Each table in a MySQL database is defined as follows:
CREATE TABLE family (< Defines the table name as 'family’ sQL
Data Define Don't allow Generates
ID type column null values incrementing 1D
l‘L\l_l_\l . 1| . 1} . 1
id INT PRIMARY KEY NOT NULL AUTO INCREMENT,
) last_name VARCHAR(50) NOT NULL \Deﬁmes the columns in the table
* The "AUTO_INCREMENT" notation tells MySQL to auto-generate an incrementing
number starting from 1 to generate an 'id' column for a primary key
» The "full address" of this table is familydb. family - referencing the family table
from the familydb database
SQL + PYTHON DATA SOCIETY © 2017 29

DATA SOCIETY © 2017

15

Adding or dropping columns

» Adding columns to an existing table:

Table Data Allow null a
Change table name Add column Column name type values
1 A 1 1 T W

r 1 [1 [1 [\ f 1
ALTER TABLE family member ADD COLUMN birthday month INT NULL

* Dropping columns from an existing table:

Table sQL

Change table name Drop column Column name
1 A 1 1

r 1 [1 [1 [\
ALTER TABLE family member DROP COLUMN birthday month

SQL + PYTHON DATA SOCIETY © 2017

30

Table constraints in brief

» Constraints are sets of rules imposed on the columns of a table or the table as a

whole to limit the type of data going into that table.
 Constraints help insure the accuracy and integrity of a database and it’s tables

Constraint Examples

PRIMARY Key - a column (or columns) that serve as unique identifier for each
row of data in a table consisting of 1 or more fields. Primary keys must not have
null or duplicate values

FOREIGN Key - a column (or columns) that corresponds to a primary key in

another table acting as a cross reference between tables

NOT NULL - ensures that a column does not contain NULL values

DEFAULT - Substitutes a default value for a column when no value is provided
UNIQUE - Ensures all values in a column are different

INDEX - Stores indexed values from one or more columns to retrieve data quickly

from a table

SQL + PYTHON DATA SOCIETY © 2017

31

DATA SOCIETY © 2017

16

Foreign key relations

* Foreign keys ensure and enforce a relationship between tables

—i.e.if we have a family member table and add a foreign key constraint, we can't add a
record to it that is not cross-referenced in the main family table

— So every record in the family member table is guaranteed to have a corresponding
reference in family

Foreign Key to

[Family] Primary Key [Family member]
Relationship
Family_ID NEInE First_name First. Name Relation
1 Johnson Robert Robert C
2 Matthewson| Christian Christian f
3 Lee Mary Carey m
4 Johnson Carey
\ | Foreign Key |
| Primary Key Il
sQL + PYTHON DATA SOCIETY © 2017 32
Foreign key relations
* The syntax for creating a foreign key is shown below:
CREATE TABLE family member (QL
id INT PRIMARY KEY NOT NULL AUTO INCREMENT,
first name varchar (50) NOT NULL,
r?latlon CHAR (1) NOT NULL, Defining the columns of the
birth date DATE NOT NULL, .
— table family member
current age INT NOT NULL,
family_id INT NOT NULL,
)
ALTER TABLE family member 1. Specifies which table to alter
ADD CONSTRAINT fk family 2. ldentify the name of the constraint
FOREIGN KEY (family id) 3. Identify the column for foreign key
REFERENCES family (id) 4. lIdentify the table (column) to refer to
ON DELETE CASCADE €~ Tolls SQL to delete entries from the child table if they're
; deleted from the parent table
sQL + PYTHON DATA SOCIETY © 2017 33

DATA SOCIETY © 2017

17/

Dropping foreign keys

* When you are creating and dropping tables, you need to keep in mind any
existing foreign keys

* If you want to drop a parent table without deleting the children tables, you
have to drop the foreign key first

* Below is the syntax you can use to drop a foreign key:

ALTER TABLE family member DROP FOREIGN KEY fk family; sat
SQL + PYTHON DATA SOCIETY © 2017 34
Outline
1. Overview of SQL & importing data
2. Connecting to your database in Python
3. Adjusting tables and foreign keys
4. Creating tables in a database
5. Performing basic statements in SQL
6. Performing UNIONS and JOINS in SQL
/. Advanced: using ORMs for larger databases
QL + PYTHON DATA SOCIETY © 2017 35

DATA SOCIETY © 2017

18

Relationship types

There are several types of relationships between table records. These
relationships include:

¢ One-to-One - each record in one table will have no more than one
matching record in a second table, and vice versa.

* One-to-Many - each record in one table can have many matching
records in a second table; however, each record in the second table can
only have one matching record in the first table.

* Many-to-Many - records in one table can have many matching records
in a second table, and vice versa.

SQL + PYTHON DATA SOCIETY © 2017

36

One-to-Many relationships

One-to-Many relationships exist when each records in one table may relate to
numerous records in another table.

[Charges] < One to Many = [Items Purchased]

Account Total Charge Account Items Purchased
A153 $25 — AL Pizza
B634 $125 \ A153 Bread

B754 $12 B634 Gift Card
% B754 Soda
B754

Sports Drink

sQL + PYTHON DATA SOCIETY © 2017

37

DATA SOCIETY © 2017

19

Many-to-Many relationships

Many-to-Many relationships exist when records in one table can have many
matching records in a second table, and vice versa.

[Authors] - Many to Many [Publications]

Author Location Article Views

John LA \ War Time Human Right Violations| 50
Merav MD

Dmitri VA Trends in Modern Contract Law 100
mitri ; . .
e VA Data Driven Enterprise Decisions 75
Perils of Investment Banking 25
*|Advanced Text Mining Techniques| 30
SQL + PYTHON DATA SOCIETY © 2017

The entity-relation diagram

* Here is a diagram of the database we built

] family v
! id INT(11)
 last_name VARCHAR(50) This symbol denotes the 'one' side
> of a one-to-many relationship
—————
|
- |
| This symbol denotes the 'many' side
Y, N . .
=] tamily._member v of a one-to-many relationship
! id INT(11) /
fil —
< first_name VARCHAR(50) : interest -
 relation CHAR(1) _| family_member_interest v
) H—— . ! id INT(11)
> birth_date DATE id INT(11) N
| ¢ | © interest VARCHAR(50)
> current_age INT(11) L — —< @ family_member_id INT(11) Bl——4 >
& family_id INT(11) @ interest_id INT(11)
> >
sQL + PYTHON DATA SOCIETY © 2017

DATA SOCIETY © 2017

Inserting data into a table

* If you want to add rows to a table by hand, you can write:

Insert a value into table (column). The valueis 'clarke'.

INSERT INTO family(last name) VALUES ('clarke') QL

* Note: we don't need to specify the id column - for every column not specified,
MySQL will place either a NULL value or default value

* Since we defined the auto incrementing id value, the new row generated will
have the next value in the sequence

SQL + PYTHON DATA SOCIETY © 2017

40

Creating tables from a query

¢ |t is often useful to create a table and populate it with the result of a query:

CREATE TABLE family member first name 1. Tableto create sQL
AS

SELECT id, first name 2. Values to select
FROM family member 3. Table to grab values from

* This creates columns of the new table 'family_member_first_name', based on
the columns selected from the query, 'id" and 'first_name'

Note: this only imports the values, it does not have the same foreign keys,
indexes, or column default values

sQL + PYTHON DATA SOCIETY © 2017

41

DATA SOCIETY © 2017

21

Temporary tables

* Temporary tables are useful to store intermediate results of a complex

calculation
CREATE TEMPORARY TABLE resultl 1. Table to create sQL
AS
SELECT ... 2. Values to select

« Typically, these tables are created as a result of a query

* The lifetime of a temporary table is the same as your current connection to the

database - once it's disconnected, the tables are automatically dropped

SQL + PYTHON DATA SOCIETY © 2017

42
Truncating and dropping tables
* To remove all the data in a table, use the TRUNCATE command
Truncate Table name QL
1 1
'TRUNCATEl ‘family_member_interestl
» Drop columns from an existing table with the DROP command
Change table Table name saL
I 4 || A 1
DROP TABLE family member interest
 |If you run the above command a second time, you'll receive an error from MySQL since the
table no longer exists - if you want to ensure that the table doesn't exist, you can add the IF
EXISTS syntax
DROP TABLE @family_member_interest sQL
SQL + PYTHON DATA SOCIETY © 2017 43

DATA SOCIETY © 2017

22

3 stages of data tables

+ Often tables imported from another environment are not ready for analysis
* When preparing for an analysis think of three types of tables:
— Raw - immediately imported

—Intermediate - some data wrangling has been performed
* Ex: dates might be imported as text and require transformation into a date format for analysis

— Analysis - table has been aggregated and prepared for analysis

Source Data I
Tables .

N abala
UdLldDdsStT

A A IS
Raw Tables Intermediate Analysis
Tables Tables

“Note: it is a best practice to name tables to distinguish these table types (Ex. tbl_Raw Procurement_Data _2016)

QL + PYTHON : DATA SOCIETY © 2017 44
Outline
1. Overview of SQL & importing data
2. Connecting to your database in Python
3. Adjusting tables and foreign keys
4. Creating tables in a database
5. Performing basic statements in SQL
6. Performing UNIONS and JOINS in SQL
/. Advanced: using ORMs for larger databases
SQL + PYTHON : DATA SOCIETY © 2017 45

DATA SOCIETY © 2017

23

SQL data types

There are many different data types Data type examples
in SQL Server; however, there are 3 I N2 "
main data type categories: 1 G RilOn /g
-2,000 Coffee is a great way 2005-07-01
« Numeric: contains numbers and can be tostartoff yourday 00:00:00:000
d in mathematical operations $250.35 Automobile June 16 2013
use P 0.0023464 Desk Monday, January 31
2002

e Character: contains strings of text and

can be searched for words and phrases —_— Examples of data types ——

or concatenated
Numeric Data Types Character Data Types Date Data Types

+ Date: contains dates and/or times that ot o Char + Datetime
I . date t * Money » Varchar * Date
are stored as number allowing date type . Deciral . Nvarchar C Time
fields to also be used in mathematical
ope rations https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql
sQL + PYTHON DATA SOCIETY © 2017 46
* NULL values are non-existing records in a field. They are different from "blank" or
"zero-length” string values (i.e. ")
— NULL values are excluded from aggregate functions:
» Example: when SQL counts the number of records in the ID Number column (“COUNT (ID Number)”)
it returns a count of 2
— NULL values do not link to one another when they are in a field being used as the
relationship for combining tables
 To locate NULL values, use “IS NULL" (or “IS NOT NULL") in a WHERE clause
— Example: “WHERE ID Number IS NULL” would return only row 3 in the table below
"ID_Number i Category Purchase_Date
BLANK Values —F TBMW 20020101 00:00:00.000
2 1112 Memedse—NULL
NULL Values 3— NULL NULL 1970-12-01 00:00:00.000
sQL + PYTHON DATA SOCIETY © 2017 47

DATA SOCIETY © 2017

24

Query examples and explanation

* SQL Queries follow a standard order of statements that must
be followed in each query for SQL server to understand a query

—Not all statements are required for every query, but the same order of
commands must be maintained

SQLQuery1.5ql - not connected* X
1 ° SELECT 1 SELECT Contract_NO
2 INTO 2 FROM [tbl_DS_Sample]
. 3
4
3. FROM
4 . WHERE SQLQuery1.sql - US...S\mfergusson (33))*
1 [EISELECT Contract NO
5 ° GROUP BY i l:gg::E z::t[r):cia;:oliika "%12345F%"
4 | GROUP BY Contract NO
6. HAVING 5 | HAVING Contract NO = '12345F'
6 | ORDER BY Contract NO
7. ORDER BY ’
sQL + PYTHON DATA SOCIETY © 2017 48
* To retrieve data from a single table, the query syntax is:
SELECT column 1, column 2, ... 1. SELECT - defines the fields that will be included sQL
FROM table in the new table requested by a query from other
WHERE logical conditions tables and from functions
ORDER BY columnl, column2 desc 2. FROM - defines the existing tables that a query
L,IMIT N will draw data from
OFFSET M 3. WHERE - filters the query results based on
criteria from the original tables
4. ORDER BY - sorts the query results in order by
the indicated fields
5. LIMIT - limits the number of records based on
the value
6. OFFSET - excludes the first M number of
records
sQL + PYTHON DATA SOCIETY © 2017 49

DATA SOCIETY © 2017

25

The SELECT statement

* This query selects the five youngest members from the 'family_member' table

SQL

SELECT * < You can use * to select all columns
FROM family member

ORDER BY current age

LIMIT 5

* The database does not necessarily store the rows of a table in any particular
order - different queries performed by you or other users may reorder the rows

* To make sure the rows are returned in a particular order, specify an ORDER BY

condition.
sQL + PYTHON DATA SOCIETY © 2017 50
WHERE clause logical conditions
* Below are some of the most common logical statements used in SQL WHERE
clauses
WHERE. .. sk
columnl < columnl
columnl = column?2
columnl <> column2 €——— Checks if they are not equal
columnl <= column2
columnl between columnl and column2
columnl in (10, ’ ’) €«——— Checks if value of columnl is in a set of values
columnl not in (.0, , ’)
sQL + PYTHON DATA SOCIETY © 2017 51

DATA SOCIETY © 2017

26

WHERE clause logical conditions

* Similar to Python, logical statements can be combined with AND or OR:

‘ WHERE columnl > AND column2 = 'a' SQL’

* More complicated conditions can be applied with parentheses:

WHERE (columnl < AND column2 = 'a') saL
OR (columnl >= AND column2 = 'b'")

Be very careful when using OR with a compound logical statement
such as this one. Remember, statements inside parentheses are
evaluated first.

SQL + PYTHON DATA SOCIETY © 2017

52

Changing values with UPDATE

* We can modify specific values with an UPDATE. . .SET command

UPDATE family member 1. Update the specified table saL
SET relation = 'mother' 2. Instructsthe column to modify and the new value to give it
WHERE relation = 'm' 3. Specifies which values to modify

* We can have SET use a calculation based on another column - here, we will
create a new birthday month column and populate it based on birth_date

ALTER TABLE family member ADD COLUMN birthday month INT NULL sQL
UPDATE family member
SET

sQL + PYTHON DATA SOCIETY © 2017

53

DATA SOCIETY © 2017

27

Deleting rows from a table

* You can use DELETE to identify specific rows that you want to remove

DELETE FROM interest SQL
WHERE interest = 'reading' <«— removes reading from the interest table
sQL + PYTHON DATA SOCIETY © 2017 54
* You can use a CASE statement to derive a new column based on the values of
other columns
SELECT first name, >ar
current age,
CASE WHEN current age < THEN 'child' else 'adult' END
AS age_type < New column name defined by AS
FROM family member
* Providing a new name with AS is called aliasing a column - any column can be
aliased this way, even those that are not derived
sQL + PYTHON DATA SOCIETY © 2017 55

DATA SOCIETY © 2017

28

The CASE statement

» CASE statements can also provide a custom sort order

SELECT family id, first name, relation
FROM family member
ORDER BY family id,
CASE relation
when 'm' then
when 'f' then Here, we're sorting by m, f, ¢
when 'c' then
END

sQL

* If we had only ordered by 'family_id" and 'relation’, the relations would be
sorted in alphabetical order (c, f, m)

sQL + PYTHON DATA SOCIETY © 2017 56
Aggregating data
« Oftentimes, a column will have fewer distinct values than the total number of
rows. It is then possible to summarize by this column.
sQL
SELECT *
FROM family member
ORDER BY family id, birth date
sQL + PY?HON DATA SOCIETY © 2017 57

DATA SOCIETY © 2017

29

Aggregating data

id first name relation birth date current age |family id
2 francesca m 1984-11-18 52 1
1 mark 1 1965-08-16 52 1
3 thomeas ¢ 1990-12-09 26 1
4 mary ¢ 1992-08-21 25 1
8 helen G 199410414 23 1
6 thomas 1 1882-12-07 34 2
7 catherine m 1283-08-13 3 2 We can notice that there are fewer
8 anthony ¢ 20100415 7 2 distinct values of the 'family_id'
9 patricla © 2012-0817 5 2 CO‘Umﬂ
10 Jjesaph ¢ 20140814 3 2
1 Jim { 1288-09-01 29 3
12 theresa m 1989-07-06 28 3
13 adam © 2016-01-04 1 3
14 charlee 1 1980-05-21 48 4
15 cyminia m 1970-11-18 46 4
16 angela c 1995-06-01 22 4
17 michael G 1997-05-29 20 4
19 rogeanne m 1988-04-17 49 5
18 stephen 1 1988-12-15 47 5
sQL + PYTHON DATA SOCIETY © 2017 58
Aggregating data
* We can treat each distinct value of the family_id as a "group", and compute
calculations on each group. For example, to get the total number of members in
each group, we would write:
sQL
SELECT family id, (*) as num members
FROM family member
GROUP BY family id «—— Tells MySQL how to define the groups
family id num_members
1 5
2 5
3 3
4 4
5 5
sQL + PY?HON DATA SOCIETY © 2017 59

DATA SOCIETY © 2017

30

Additional aggregation functions

« Other aggregation functions you can use are sum(), avg(), max(), and min(). For

example:

SELECT family id, (*) as num members,
(current age) as oldest age,
avg (current _age) as avg_age,
(current age) as youngest age
FROM family member
GROUP BY family id

SQL

* You can go here for additional functions:
https://dev.mysgl.com/doc/refman/5.5/en/group-by-functions.html

SQL + PYTHON DATA SOCIETY © 2017

60
Group by multiple variables
* You can group by multiple variables as well. This defines groups and subgroups. If we
get a distinct family_id and a distinct relation, for example, then there is one group for
each unique combination of family_id and relation.
SQL
SELECT family id, relation, (*)
FROM family member
GROUP BY family id, relation
* Or we can ask "How many people have birthdays in each month?"
SQL
SELECT EXTRACT (month from birth date) as bday month, Extract the month from
(*) as num _people the birth date
FROM family member
GROUP BY
ORDER BY
sQL + PYTHON DATA SOCIETY © 2017 61

DATA SOCIETY © 2017

31

Group by multiple variables

bday_month |num_people
1 1
3 2
4 e
Note that only the months that 5 3
appear in the data will show up - 3 3
there are no February birthdays, so
there is no birthday month 2. 7 1
8 2
9 1
10 1
" 3
12 4
sQL + PYTHON DATA SOCIETY © 2017 62
t 3 : t 3
What does the * mean in count(*)?
» Count, like the other aggregation functions, can be given a column as an
argument, but it won't count the nulls
* You can use count (*) to count all of the rows in the group, as opposed to
values in a particular column. This may not seem important now, but it will
useful when we learn about outer joins.
sQL + PYTHON DATA SOCIETY © 2017 63

DATA SOCIETY © 2017

32

Aggregation with WHERE

* We might ask "how many members of each family are over age 307"

.) sQL
SELECT family id, (*)

FROM family member
WHERE current age >=
GROUP BY family id

* Filtering by HAVING is helpful if we want to filter after we have computed the
aggregate?

SQL
SELECT EXTRACT (month from birth date) as bday month,

FROM family member .
- Here, we're extracting the months that

GROUP BY A
have at least two birthdays

HAVING (*) >=

SQL + PYTHON DATA SOCIETY © 2017

64

Combining aggregations

* What if we want to answer these three questions:
— How many members of each family are over age 307
— How many children in each family are older than 47
— How many members of each family have a birthday in December?

. . SQL
SELECT family_ id,
(case when current_age >= 30 then 1 else 0 end) as gt30,
(case when relation = 'c' and current age > then else end) as cgt4,
(case when (month from birth date) = then else end) as bdayl2
FROM family member
GROUP BY family id fomiy.d ;g0 ‘og buayi2

1 1

1

@ &2 W N
L O T)
@ M O N W
N o o

sQL + PYTHON DATA SOCIETY © 2017

65

DATA SOCIETY © 2017

S8

Outline

1. Overview of SQL & importing data

2. Connecting to your database in Python
3. Adjusting tables and foreign keys

4. Creating tables in a database

5. Performing basic statements in SQL

6. Performing UNIONS and JOINS in SQL

/. Advanced: using ORMs for larger databases

SQL + PYTHON . DATA SOCIETY © 2017

66
Unions
* UNION combines two or more select statements 'by rows' - the statements
must contain the same number of columns and data types
el
SELECT first name as "First Name",
birth date as "Date of Birth",
relation as "Relation to Family"
o famllyfmember Note: This example is a bit contrived because we could
WHERE relation = 'm'
have just as easily gotten the same result using a single
iTon query with a WHERE clause. The typical use case for
UNION is when the two record sets are in different tables.
SELECT first name, birth date, relation
FROM family member
WHERE relation = 'f'
sQL + PﬁHON : DATA SOCIETY © 2017 67

DATA SOCIETY © 2017

34

Unions

* It is extremely important that the column names match up, otherwise the
output may not be what you expect

) . , sQL
SELECT first name, birth date, relation

FROM family member
WHERE relation = 'm'

UNION

This is a different column

SELECT relation, birth date, first name <€«———
- - order than above

FROM family member

WHERE relation = 'f'
sQL + PYTHON DATA SOCIETY © 2017 68
SQL table combinations
SQL tables can be combined using JOIN or UNTON statements to merge columns
or records respectively
JOIN UNION
ID First Name Last Name
-Ai _John _Smith -
D Las Name o
Al John Al Smith Al John Smith A2 | Samantha Ripken
A2 Samantha “‘ ig | Ri}:}ken A2 | Samantha | Ripken A3 Paul Johnson
A3 Paul Johnson A3 Paul Johnson "
: “ ID_ First Name Last Name A4 | Taylor | Prince
-AS _Paul _Johnson
¢ A JOIN brings columns from 2 different tables into a * A UNION appends records from 2 tables into a combined
combined table table
* The combined table can have more or fewer records than * The combined table will have more records than its
its parent tables depending on both the relationship parent tables assuming no filtering is applied to either
between records on the parent tables and the type of table
join performed
sQL + PYTHON DATA SOCIETY © 2017 69

DATA SOCIETY © 2017

35

Using table aliases

A table alias allows a table to be temporarily renamed within the scope of an
individual query. This makes queries easier to read and limits the amount of code

required for a query to execute.

Sample— Code
[First] [Last]
ID__Last Name

AL John Al Smith . .)

e Samantha A3 | Johnson | SELE?T a.id a§ far.nlly_rlnember_ld, .

A3 Paul [a4 [Ader | b.id as family id, first name, last name, birth date
FROM |family member as a|
JOIN [family as b | The aliases of “a” and “b” are used to

replace tables family member and
family respectively for indicating the
source of each field in the query

ON a.family id = b.id

ID First ID Last
Name NE

Aliases can be assigned with or without “AS” following a table name
SQL + PYTHON DATA SOCIETY © 2017 70
More complex join conditions
* Suppose we wanted to show pairs of individuals where for each person, we
show everyone who is younger than that person
* The following example uses a "self join" - joining a table to itself - to answer
this question.
sQL
SELECT a.id as id younger, a.first name as first name younger,
a.current age as current age younger,
b.id as id older, b.first name as first name older,
b.current age as current age older
FROM family member as a
JOIN family member as b
ON a.birth_date > b.birth _date
ORDER BY a.birth date desc, a.first_name, b.birth date desc
71

sQL + PYTHON DATA SOCIETY © 2017

DATA SOCIETY © 2017

36

Outer joins

* It might not always be the case that every value in the first ("left") table matches
a value in the second ("right") table:

SELECT family member id, first name, interest id &
FROM family member as a

JOIN family member_ interest as b

on a.id = b.family member id

order by family member id

* Here, the results show us that we're missing person numbers 1, 5, 19, and 22
are missing from this table

« An outer join (as opposed to inner join) will retain every value in the left table

* If there is no match on the right, we will still see the value from the left, and all
of the right-hand side column will have a value of NULL.

SIQES PYTHON DATA SOCIETY © 2017 72
Left joins
* The only difference to perform an outer join is to replace JOIN with LEFT
OUTER JOIN, or simply LEFT JOIN:
sQL
SELECT a.id, first name, interest id
FROM family member as a
LEFT JOIN family member interest as b
on a.id = b.family member_id Note with an outer join, it matters which
order by family member 1d €——— y3pje we use in the order by!
* Note, there is also a right outer join, but you just need to switch the order of
the two tables and using a left join. For this reason it is hardly used.
SQL + PY?HON DATA SOCIETY © 2017 73

DATA SOCIETY © 2017

37

Left joins

* If we wanted to get a count of each person's interests, we could run the

following code:
SQL

SELECT a.id, (interest id) as num interests
FROM family member as a
LEFT JOIN family member_interest as b
on a.id = b.family member id
GROUP BY a.id
ORDER BY a.id

* The right-hand side column interest id will be nullin the case of no
match, and count(x) only counts non-null values of the column x.

sQL + PYTHON DATA SOCIETY © 2017 74

Left joins: more advanced

* Francesca and Mark are both 52 years old, which is the oldest age in the
family member table

 Since Francesca is slightly older, she does not appear on the left hand side of our
results because there was no match on the right hand side for her, i.e., there was no

one found who is older than her
* So we can change the query to do a left join instead:

SELECT a.id as id younger, a.first name as first name younger, a
a.current_age as current_age_ younger,
b.id as id_older, b.first name as first_name_older,
b.current_age as current_age older

FROM family member as a

LEFT JOIN family member as b
ON a.birth date > b.birth date

ORDER BY a.birth date desc, a.first name, b.birth date desc

sQL + PYTHON DATA SOCIETY © 2017 75

DATA SOCIETY © 2017

38

Cross joins

* A cross join is simply an inner join, where the "ON" condition is always true

SELECT a.last name, b.last name
FROM family as a

JOIN family as b))
Always true, so every row in table a will be

SQL

o N matched with every row in table b
If you take the cross join of two tables A and B,
and table A has 500 rows and table B has 600 rows,
how many rows will you get back?
QL + PYTHON : DATA SOCIETY © 2017 76
Subqueries
* You can use a query, surrounded by parentheses, as a pseudo-table, such as in the
following example:
sQL
SELECT a.id, last name, min age, max age
FROM family as a
JOIN
(SELECT family id, (current age) as min age, (current age) as max_age
FROM family member
GROUP BY family id) as b €«——"Table b"is called a subquery
ON a.id = b.family id
* Subqueries are extremely useful for combining information on the fly, but can become
computationally expensive - it may be better to create a temporary table
Note: you must provide an alias for the subquery (for example 'as b' above,
otherwise you will get an error: "Every derived table must have its own alias."
QL + PYTHON : DATA SOCIETY © 2017 77

DATA SOCIETY © 2017

39

Multiple joins

* It is extremely important that the column names match up, otherwise the
output may not be what you expect

SELECT first name, birth date, relation
FROM family member
WHERE relation = 'm'

UNION

This is a different column

SELECT relation, birth date, first name <€«———
- - order than above

FROM family member

SQL

WHERE relation = 'f'
sQL + PYTHON DATA SOCIETY © 2017 78
Indexing for better query performance
* It is extremely important that the column names match up, otherwise the
output may not be what you expect
sQL
SELECT first name, birth date, relation
FROM family member
WHERE relation = 'm'
UNION
SELECT relation, birth date, first name €——— Th(;s isf}diffebrerﬁ column
FROM family member orderthan above
WHERE relation = 'f'
sQL + PYTHON DATA SOCIETY © 2017 79

DATA SOCIETY © 2017

40

Indexing for better query performance

* It is extremely important that the column names match up, otherwise the
output may not be what you expect

) . , sQL
SELECT first name, birth date, relation

FROM family member
WHERE relation = 'm'

UNION

This is a different column

SELECT relation, birth date, first name <€«———
- - order than above

FROM family member
WHERE relation = 'f'

SQL + PYTHON DATA SOCIETY © 2017 80

Getting metadata from information_schema

* It is extremely important that the column names match up, otherwise the
output may not be what you expect

sQL
SELECT first name, birth date, relation

FROM family member
WHERE relation = 'm'

UNION

This is a different column

SELECT relation, birth date, first name €———
- - order than above

FROM family member
WHERE relation = 'f'

sQL + PYTHON DATA SOCIETY © 2017 81

DATA SOCIETY © 2017

41

Joining logic comparison

— Inner Joins — Outer Joins
InnerJom Left Outerjom nght Outer]om Full OuterJom
A <> B
A > B A 4> B NULL <> B
A <—> NULL NULL <—> B A <4—> NULL
Cross Join Left Outer Join Right Outer Join Full Outer Join
(w/ Exclusion) (w/ Exclusion) (w/ Exclusion)
6"‘@
NULL <> B
A2 B, A <—> NULL NULL <—> B A <4—> NULL
As B,
QL + PYTHON DATA SOCIETY © 2017 32
Outline
1. Overview of SQL & importing data
2. Connecting to your database in Python
3. Adjusting tables and foreign keys
4. Creating tables in a database
5. Performing basic statements in SQL
6. Performing UNIONS and JOINS in SQL
/. Advanced: using ORMs for larger databases
SQL + PYTHON DATA SOCIETY © 2017 83

DATA SOCIETY © 2017

42

Quality control tips for joins

 Pay attention to the row counts!

— Is the number of rows what you expect?

« A common problem is assuming that a field or combination of fields represents a unique value. When
that is not the case you can see an increase in record count.

* Another common issue is incorrectly setting criteria of a join or WHERE clause and excluding more
records than were originally intended.
— Use simple queries on each original table to compare the number of records with given
criteria to the number in the joined table.
— Itis also helpful to use LEFT and/or RIGHT joins to determine the overlap between
tables and whether:
» The fields you are using to link the original tables are appropriate.

» The tables themselves are appropriate to combine for an analysis (2 tables can appear to be similar
data from field names but actually contain little to no overlap).

sQL + PYTHON DATA SOCIETY © 2017 84
Logical : i
ogica operators: comparisons
Logical operators test whether or not a condition is true. They are generally used
in CASE Statements, JOINs, WHERE clauses, HAVING clauses.
Comparison Operators:
Operator Operator name Description
= Equal True when the 1%t value equals the 2" value being tested
<> Not equal True when the 1%t value does not equals the 2" value being tested
1= Not equal
< Less than True when the 1t value is less than the 2" value being tested
<= Less than or equal to True when the 1%t value is less than or equal to the 2" value being tested
1> Not greater than
> Greater than True when the 1%t value is greater than the 2" value being tested
>= Greater than or equal to | True when the 1%t value is greater than or equal to the 2"9 value being
I< Not Less than tested
SQL + PYTHON DATA SOCIETY © 2017 85

DATA SOCIETY © 2017

43

Logical operators: comparisons

Logical operators test whether or not a condition is true. They are generally used
in CASE Statements, JOINs, WHERE clauses, HAVING clauses.

Comparison Operators:

Operator Description

IN True when values being tested match values in a list of values specified either
as a query resulting in 1 column or a list of values separated by commas
BETWEEN True when values being tested are within an inclusive range (lower and upper
values are searched as well as the values in between)
LIKE True when values being tested match a patterns in character fields specified
after the LIKE operator
NOT used to reverse the logic of the IN, BETWEEN, or LIKE operators to negate

conditions (i.e. a query containing “ WHERE NOT LIKE ‘%data%’ “ would return
all records that do not contain “data” anywhere in the string being tested)

sQL + PYTHON DATA SOCIETY © 2017

86
Logical operators: LIKE
[J
The LIKE clause matches patterns of text to a character field. It is important to
understand how to leverage special characters (“%”, “_", “[", “]", and “”) to
accurately match patterns.
— Wildcard - characters that substitute for any other character in a string
« ‘%" - used to represent zero or more characters and is typically used before and/or after the part of
text being searched for to look for that text anywhere in the character string
« ‘" -used to represent 1 character
— Specified patterns - Brackets “[]” can be used to specify lists or ranges of characters or
numbers that should be represented by a character in a pattern
« Using “*" after the opening bracket changes exclude the characters following it (ex. “[*m]” matches
any letter other than “m”)
— Escape - The special characters listed above (“%”, “ ", “[”, and “]") need to be treated
differently than others. They either need to be included in brackets or placed after an
escape character
sQL + PYTHON DATA SOCIETY © 2017 37

DATA SOCIETY © 2017

44

Multiple logical operators

Multiple logical operators can be strung together by relating them with AND or OR

statements.

* AND - used to connect two or more conditions and only returns those rows
meeting all conditions

* OR - used to connect two or more conditions and returns any rows that meet
any of these conditions

* Order of logical operations: ‘()" = “AND” 2> “OR’

sQL + PYTHON

DATA SOCIETY © 2017

88

Performance: argument order

Fastest

l

Slowest

> >=,<,<=
LIKE

<>

* Try to use a leading character with LIKE
(ex. LIKE 'm%' instead of LIKE '%m‘)

¢ Use LIKE instead of SUBSTRING with =

OR
AND

* Be careful with OR

* If multiple ANDs, put least likely condition
first

« If equally likely, put least complex
condition first

sQL + PYTHON

DATA SOCIETY © 2017

89

DATA SOCIETY © 2017

45

Performance: query structure

 Restrict result sets by using WHERE or only selecting the columns needed

* Use WHERE with HAVING when appropriate

* ORDER BY is inefficient; sort results in a separate step

sQL + PYTHON

DATA SOCIETY © 2017

90

Performance: space efficiency

» Backup your database, but don't store excessive copies of the backup

* Choose between temp tables and views

» Use appropriate field types (avoid using NVARCHAR)

sQL + PYTHON

DATA SOCIETY © 2017

91

DATA SOCIETY © 2017

46

Questions?

SQL + PYTHON

=

AZ'AOL I

DATA SOCIETY © 2017

92

sQL + PYTHON

APPENDIX

DATA SOCIETY © 2017

93

DATA SOCIETY © 2017

47

Creating tables in database

Next, we will

populate our database with tables.

tables=[
{
'name': 'family', 1.
Yqueryv H mwawn 2
create table family(3.
Data Define Don't allow Generates
ID type column null values incrementing ID
f : Y A Y A Y . Y A 1
id INT PRIMARY KEY NOT NULL AUTO INCREMENT, 4.
last_name VARCHAR (50) NOT NULL
)
}I
CREATE TABLE family (sQL
id INT PRIMARY KEY NOT NULL AUTO_INCREMENT, |

last name VARCHAR(50) NOT NULL

familydb.py

Name of the table
Sets up the query
Create the table 'family'

These lines name and define
attributes of the fields that will
populate the empty tables being
created

N Example of what the

code translates to in SQL

sQL + PYTHON DATA SOCIETY © 2017 94
Creating tables in database
...Continued from the previous slide... familydb.py
{
'name': 'interest', 1. Name of the table
'query': """ 2. Sets up the query
create table interest(3. Create the table 'interest’
Data Define Don't allow Generates
ID type column null values incrementing ID
L1 1 1 1
'id"INT' PRIMARY KEY NOT NULL' AUTO INCREMENT, 4. These lines name and define
: imEeresi VARCERAR(S0) MW NOLL attributes of the fields that will
[populate the empty tables being
) created
CREATE TABLE interest (SQL
id INT PRIMARY KEY NOT NULL AUTO INCREMENT,
interest VARCHAR (°0) NOT NULL
)
sQL + PYTHON DATA SOCIETY © 2017 95

DATA SOCIETY © 2017

48

Table constraints in brief

» Constraints are sets of rules imposed on the columns of a table or the table as a
whole to limit the type of data going into that table.

« Constraints help insure the accuracy and integrity of a database and it’s tables

Constraint Examples

« PRIMARY Key - a column (or columns) that serve as unique identifier for each
row of data in a table consisting of 1 or more fields. Primary keys must not have
null or duplicate values

¢ FOREIGN Key - a column (or columns) that corresponds to a primary key in
another table acting as a cross reference between tables

« NOT NULL - ensures that a column does not contain NULL values

* DEFAULT - Substitutes a default value for a column when no value is provided

o UNIQUE - Ensures all values in a column are different

* INDEX - Stores indexed values from one or more columns to retrieve data quickly

from a table
sQL + PYTHON DATA SOCIETY © 2017 96
Creating tables in database
...Continued from the previous slide... familydb.py
{
'name': 'family member', 1. Name of the table
'query': """ 2. Sets up the query
create table family member (3. Create the table 'family member'
id INT PRIMARY KEY NOT NULL AUTO INCREMENT, 4. Here we define all the columns in
first name varchar (50) NOT NULL, ' the table
relation CHAR (1) NOT NULL,
birth date DATE NOT NULL,
CUEECHE RGeS I WO MULL, CREATE TABLE family member (saL
Fempllly del MUr RO MO, id INT PRIMARY KEY NOT NULL AUTO INCREMENT,
-) first name varchar (50) NOT NULL,
relation CHAR (1) NOT NULL,
b birth date DATE NOT NULL,
current_age INT NOT NULL,
family id INT NOT NULL,
)i
sQL + PYTHON DATA SOCIETY © 2017 97

DATA SOCIETY © 2017

49

Creating tables in database

familydb.
...Continued from the previous slide... amiyeb-py
{
'name': 'family member interest', 1. Name of the table
'query': """ 2. Sets up the query
create table family member interest (3. Creates the table

id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
family member id INT NOT NULL,
interest id INT NOT NULL
)
wan
}
1

‘family_member_interest'
4. Defines all the columns in the
table

SQL + PYTHON DATA SOCIETY © 2017 98
Outline
1. Overview of SQL & Importing data
2. Connecting to your database
3. Creating tables in a database
4. Adding foreign keys and adjusting data
5. Performing basic statements in SQL
6. Performing UNIONS and JOINS in SQL
/. Advanced: using ORMs for larger databases
QL + PYTHON DATA SOCIETY © 2017 99

DATA SOCIETY © 2017

50

Importance of table relationships

» Combining data accurately from tables in a database or from disparate sources
requires a thorough understanding of how fields in those tables are related

* Failure to understand these relationships can result in duplicate or missing records
that can materially impact the results of your analysis

What are the total purchases from each state?

[Customers]
Cust_ID Name State SELECT A.* (i
1 Joh VA SELECT A.State, sum(B.amt) as State_Purchases CA 2
2 Mat VA » e e e MN 2.25
3 Lee CA lov 2.cuse 70 = 5.cuse 1] VA 2475
4 John MN GROUP BY A.State
[Purchases]
Cust_ID Name Purch_ID amt SELECT A.*
1 John 1 $10.50 SELECT A.State, sum(B.amt) as State_Purchases State State_Purchases
2 Matt 2 $5.00 » 6] (STERETD 2 CA 2
3 Lee 3 $2.00 B Atoe = maas] MN 24.00
4 John 4 $4.25 GROUP BY R.State VA 29.00
1 John 5 $9.25
SQL + PYTHON DATA SOCIETY © 2017 100
* In order to maintain data quality and integrity between related tables, it is important
to define those relationship through conceptual (or sometimes physical) constraints on
table fields called keys.
* There are 2 main types of keys to note for this course:
— Primary Key - a column (or columns) that serve as unique identifier for each row of data in a
table consisting of 1 or more fields
* Primary keys must not have null or duplicate values
— Foreign Key - a column (or columns) that corresponds to a primary key in another table acting
as a cross reference between tables
Foreign Key to
[Customers] £ Primary Key [States]
CUSJD n Se Refationship Se State_Name
2 Matt VA
8 Lee CA U,A\‘ 2‘22755
4 John MN .
| Foreign Key |
| Primary Key II
SQL + PYTHON DATA SOCIETY © 2017 101

DATA SOCIETY © 2017

51

Inconsistent keys

* It'simportant to remember that these key's should be well defined and
structured as physical constraints of a database, but that is not always the case

* Often as an analyst you will encounter related tables where these key
relationships are broken or not maintained properly

« Always check the data in related fields to make sure the relationship between
2 tables holds and that you are using the correct relationship to combine them

Customers Foreign Key to
_[] ; Primary Key [States]
CUS_ID n Se Relationship State State_Name
2 Matt VA C2A - 25 :
; o o MN 4.25
4 John MN MN_ N
24.75

| Foreign Key |

| Primary Key Il

SQL + PYTHON DATA SOCIETY © 2017 102
The SQL ALTER TABLE statement can also be used to change data types as well as other
modifications to the structure of a table such :as:

1. Adding, dropping, or modifying table columns
2. Adding, dropping constraints
ALTER TABLE First2 . 2
ADD COLUMN Salary el S ALTER TABLE First2
R COLIRY DROP COLUMN Salary
UPDATE First2 Sallamy DEC (10, 4)
[First2] SET Salary =1 | 1
o it e A ID __First Name
Al John AL | Jomn 1.00 AL | John | 1.0000 Al John
2 | Samantha O amantha .
A2_| Samantha Ao e T100 Ao e 10000 A2_| samantha
A3 Paul ’ _E®_| A3 Paul
ALTER TABLE First2 ALTER TABLE First2
ADD CONSTRAINT » DROP CONSTRAINT PK 1
PK_l PRIMARY KEY
(ID)
SQL + PYTHON DATA SOCIETY © 2017 103

DATA SOCIETY © 2017

52

Joins: code structure

The illustration below demonstrates how the JOIN code relates these tables. In more
complex joins, tables are referred to as LEFT and RIGHT tables based on their order in

the SQL statement, which will impact the records returned in result sets.

SELECT A.*, B.[Last Name]

FROM [First] A

JOIN [Last] B

The LEFT table The RIGHT table

Code -
follows FROM follows JOIN
Result
First Name
Al John N ID First Name Last Name
A2 Samantha 1 /) ‘
A3 Paul V
TableS & [FirSt] 1D Last Name
R |JE (LEFT TABLE) 2% JS;nith I
lohnson
esu S A4 Adler
[Last]
(LEFT TABLE)
sQL + PYTHON DATA SOCIETY © 2017 104
[]
Joins: INNER JOIN
)
An INNER JOIN between 2 tables returns the intersection between those 2 tables
— Tables — Code Logic
[First] [Last] SELECT A.*, B.[Last Name]
1D Last Name: FROM [First] A
A John &l Smith INNER JOIN [Last] B
A2 Samantha A3 Johnson
A3 Paul 4 Adler ON A.ID = B.ID
- or
Result
ID__ First N Last N SELECT A.*, B.[Last N 1
S [Last Name] Connection
[First] A
JOIN [Last] B
ON A.ID = B.ID A— B
105

sQL + PYTHON

DATA SOCIETY © 2017

DATA SOCIETY © 2017

53

Joins: LEFT OUTER JOIN

A LEFT OUTER JOIN between 2 tables returns all records from the table in the initial
table and the intersection between those 2 tables. Where there is no intersection NULL
values are populated in columns selected from the joined table.

— Tables — Code Logic
[First] [Last] SELECT A.*, B.[Last Name]
FROM [First] A
AL John AL Smith LEFT OUTER JOIN [Last] B
A2 Samantha A3 Johnson
A3 Paul A4 Adler ON A.ID = B.ID
III. or
Result
SELECT A.*, B.[Last Name] 3
Al e | o [parot] Connection
amantha NULL
A3 Paul Johnson LEFT JOIN [Last] B A'_' B
ON A.ID = B.ID A NULL
—
sQL + PYTHON DATA SOCIETY © 2017 106
Joins: LEFT OUTER JOIN lud
oins: exciuae
A LEFT OUTER JOIN with exclusion between 2 tables returns only records from the
original table with no intersection to the initial table.
— Tables — Code Logic
[First] [Last] SELECT A.*, B.[Last Name]
1D Last Name FROM [First] A
AL John AL Smith LEFT OUTER JOIN [Last] B
A2 Samantha \ A3 \ Johnson \
A3 Paul [ad 1T ader | ON A.ID = B.ID
WHERE B.ID IS NULL
III. or
Result
ID__ First N Last Name SELECT A.*, B.[Last Name] 1
o Iparot] Connection
LEFT JOIN [Last] B
ON A.ID = B.ID A— NULL
WHERE B.ID IS NULL
sQL + PYTHON DATA SOCIETY © 2017 107

DATA SOCIETY © 2017

54

Joins: RIGHT OUTER JOIN

A RIGHT OUTER JOIN between 2 tables returns all records from the joined table and
the intersection between those 2 tables. Where there is no intersection NULL values are

populated in columns selected from the table in the initial table.

— Tables — — Code Logic
[First] [Last] SELECT B.ID, A.[First Name]
ID__Last Name , B.[Last Name]
Al John Al Smith FROM [First] A
A2 Samantha A3 | Johnson |
A3 Paul A4 Adler RIGHT OUTER JOIN [Last] B

ON A.ID = B.ID

—— or

Result

SELECT B.ID, A.[First Name] :
St | ow . 2. (Last Nanel) Connection
A4 | NULL Adler FROM [First] A A'_’ B
RIGHT JOIN [Last] B
ON A.ID = B.ID NULL<— B
SQL + PYTHON DATA SOCIETY © 2017 108
Joins: RIGHT OUTER JOIN lud
oins: exciuae
ARIGHT OUTER JOIN with exclusion between 2 tables returns only records from the
joined table with no intersection to the initial table.
— Tables — —Code Logic
[First] [Last] SELECT B.ID, A.[First Name]
> , B.[Last Name]
ID__Last Name .
Al John AL Smith FROM [First] A
£2_| Sk ‘ = ‘ Jobnson | RIGHT OUTER JOIN [Last] B
ON A.ID = B.ID
‘ WHERE A.ID IS NULL
or
Result
: N SELECT B.ID, A.[First Name] .
[e Connection
FROM [First] A
RIGHT JOIN [Last] B
ON A.ID = B.ID NULL<— B
WHERE A.ID IS NULL
DATA SOCIETY © 2017 109

sQL + PYTHON

DATA SOCIETY © 2017

55

Joins: FULL OUTER JOIN

A FULL OUTER JOIN between 2 tables returns all records from both tables including
their intersection.

— Tables — —Code Logic
[First] [Last]
D Last Name
Al Smith
om T = SELECT CASE WHEN A.ID IS NULL
A3 Paul Ad Adler THEN B.ID

ELSE A.ID

‘ END as ID

FROM [First] A

Result FULL OUTER JOIN [Last] B
ON A.ID = B.ID :
v Connection
A2 | Samantha NULL
A3 Paul Johnson /A<_> B
A4 NULL Adler
A< NULL
NULL<— B
sQL + PYTHON DATA SOCIETY © 2017 110
Joins: FULL OUTER JOIN lud
oins: exciuae
A FULL OUTER JOIN with exclusion between 2 tables returns only records from both
tables excluding their intersection.
— Tables — —Code Logic
[First] [Last]
ID___Last Name SELECT CASE WHEN A.ID IS NULL
Al John Al Smith
A2 Samantha [A3 [Johnson | THEN B.ID
A3 Paul [a4 [Adler | ELSE A.ID
END as ID
‘ , A.[First Name] , B.[Last Name]
FROM [First] A
Result FULL OUTER JOIN [Last] B
ID First Name Last Name ON A.ID = B.ID 1
wemEm i TR Ao e T Connection
OR B.ID IS NULL
A< NULL
NULL<— B
sQL + PYTHON DATA SOCIETY © 2017 111

DATA SOCIETY © 2017

56

Joins: CROSS JOIN

— Tables —

[First] [Last]

[] First Name 1D Last Name

Al

John Al Smith

A2

Samantha [A3 | Johnson |

A3

Paul Al Adler

Result
First Name Last Name

ohn Smith
Smith
Paul ISmith
ohn ohnson
ohnson
Paul ohnson
ohn IAdler
|Adler
Paul Adler

A CROSS JOIN between 2 tables returns every combination of records from one table
to the other.

Code

SELECT CASE WHEN A.ID IS NULL
THEN B.ID
ELSE A.ID

SELECT A.[First Name]

, B.[Last Name]

FROM [First] A

CROSS JOIN [Last] B

Logic

Connection

A B,
L
A3 BS

SQL + PYTHON DATA SOCIETY © 2017 112
Matching foreign keys in tables
familydb.
foreign_ keys = [ST
{
'tablename':'family member',
Tfks': [
{ .
'name': 'fk_family', 1. Name of the foreign key
'query': """ 2. Sets up the query
ALTER TABLE family member 3. Specifies which table to alter
ADD CONSTRAINT fk family 4. ldentify the name of the constraint
FOREIGN KEY (family id) 5. ldentify the column for foreign key
RIMIREANCITS ifamil ly (1el) 6. ldentify the table (column) to refer to
ON DELETE CASCADE
} ; L
11 Tells SQL to delete entries from the |ALTER TABLE family member Q
child table if they're deleted from ADD CONSTRAINT fk_family
7 H bl FOREIGN KEY (family id)
the parent table REFERENCES family (id)
ON DELETE CASCADE
SQL + PYTHON DATA SOCIETY © 2017 113

DATA SOCIETY © 2017

57

Matching foreign keys in tables

familydb.
...Continued from the previous page... SRRy
{
'tablename': 'family member interest’,
'fks': [
{ .
'name': 'fk pi family member', 1. Name of the foreign key
‘query':""" - 2. Sets up the query
3. Specifies which table to alter

ALTER TABLE family member_ interest
ADD CONSTRAINT fk pi family member 4. ldentify the name of the constraint
FOREIGN KEY (family member_ id) |dentify the column for foreign key

5
REFERENCES family member (id) 6. ldentify the table (column) to refer to
ON DELETE CASCADE

Bo \
Tells SQL to delete entries from the

child table if they're deleted from
the parent table

SQL + PYTHON DATA SOCIETY © 2017 114
Matching foreign keys in tables
...Continued from the previous page... familydb.py
{
'name': 'fk pi interest', 1. Name of the foreign key
I @iy’ g T 2. Sets up the query
ALTER TABLE family member interest 3. Specifies which table to alter
2D CONSIRAIRY {E il AmiEeresit 4. Identify the name of the constraint
FORE;EI;EEE;C];;“FQ?St—t‘?)_ " 5. Identify the column for foreign key
IMCEIERSE 1 .
ON DELETE CASCADE 6. ldentify the table (column) to refer to
b N
Tells SQL to delete entries from the
child table if they're deleted from
the parent table
sQL + PYTHON DATA SOCIETY © 2017 115

DATA SOCIETY © 2017

58

Defining functions

v function - here familydb.py
| E6 have the name ' and
'fk name', whic will variables function.
def fk_exists(tbl name,)8
cur.execute ("""select * from information_schema.table constraints
where table schema='familydb'
and table name='{}' 1. {} creates dictionaries with key-
and constraint name = '{}' value pairs
""", format (tbl_name,))
return len(cur.fetchall()) > 0 2. fetchall returns all the rows for the current
query
def index exists(tbl name, index_ name) :
cur.execute ("""select * from information schema.statistics
where table schema='familydb'
and table name='{}"'
and index name = '{}'
"t format (tbl_name, index_name))
return len (cur.fetchall()) > 0
SQL + PYTHON DATA SOCIETY © 2017 116
Dropping foreign constraints
We'll run the functions we defined ier to drop foreign keys Ry
if they exist.
for tbl in foreign keys:
tbl name = tbl['tablename']
fks = tbl['fks']
for fk in fks:
drop_fk = 'ALTER TABLE {} DROP FOREIGN KEY {}'
drop_index = 'ALTER TABLE {} DROP INDEX {}'
key name = fk['name']
if fk exists(tbl name, key name):
cur.execute (drop_fk.format (tbl name, key name))
if index_exists (tbl name, key_ name):
cur.execute (drop_index.format (tbl_name, key name))
dbconn.commit ()
sQL + PYTHON DATA SOCIETY © 2017 117

DATA SOCIETY © 2017

Recreating the tables

. familydb.py
for table in tables:

print ('dropping '+table['name'])
cur.execute ('drop table if exists '+table['name'])
dbconn.commit ()

for table in tables:
print ('creating '+table['name'])
cur.execute (table['query'])
dbconn.commit ()

for tbl in foreign keys:
tbl name = tbl['tablename']
fks = tbl['fks']
for fk in fks:
cur.execute (fk['query'])

dbconn.commit ()

sQL + PYTHON DATA SOCIETY © 2017

118

Loading files into a database

familydb.
First, create a function to load in the csv files. WY

def load_file(tablename) :

f = open('data/'+tablename+'.csv', 'r') QOpen the filepath for the csv file
header = f.readline()

query = ""n
insert into {1} ({})

values ({})

line = f.readline () .strip()
n =20
while line:
n += 1
line parsed = ','.join([""'"+val+"'" for val in line.split(',"')])
cur.execute (query.format (tablename, header, line parsed))
line = f.readline() .strip()
print ('loaded {} lines to {}'.format(n, tablename))
return n

SQL + PYTHON DATA SOCIETY © 2017

119

DATA SOCIETY © 2017

60

Loading files into a database

1 - . . familydb.py
use the function we defined above to load in the file names.
n families = load file('family")
n_fam members = load file('family member')
n_interests = load file('interest')
dbconn.commit ()
family.csv family_member.csv interest.csv
A A | A : c D | A
1 last_name 1 first_name birth_date family_id relation 1 interest
2 williams 2 mark 19650316 1f 2 cooking
3 'johnson 3 francesca 19641118 im) sports
4 ’myers 4 thomas 19501209 lc Trunning
Sl rvers 5 mary 19920821 llc 5 readin
2 mye 6 helen 19941014 1c : 8
611 robinson 7 thomas 19821207 2t ©travel
& catherine 19830813 2m 7 biking
9 anthony 20100415 2¢ | 8 comics
10 patricia 20120517 2¢c 9 music
10 history
11 programming
12 film
sQL + PYTHON DATA SOCIETY © 2017 120
Updating ages
familydb.
Update the current age field to calculate their age as of today. EIMIELEHR)
We'll need the DATEDIFF function, and the MySQL internal CURRENT DATE variable
cur.execute ("update family member
set current age = floor (DATEDIFF (CURRENT DATE, birth date)/365) ")
dbconn.commit ()
sQL + PYTHON DATA SOCIETY © 2017 121

DATA SOCIETY © 2017

Creating people's interests
1 ; § § E . familydb.py
First import numpy and set the seed to make it reproducible
import numpy as np
np.random.seed (100)
Next, set the values. The random.randint function returns a random integer. The
arguments define the parameters.
n_person_interests = n_ fam members*3
rand_person_ids = np.random.randint (1, n_fam members+l, n_person_interests)
rand_interest_ids = np.random.randint(l, n_interests, n_person_interests)
for i in range(n_person_interests):
query = """
insert into family member interest(family member id, interest id)
values ({},"{}")
""" format (rand person ids[i], rand interest ids[i])
cur.execute (query)
dbconn.commit ()
print ('loaded {} lines to family member interest'.format (n_person_ interests))
sQL + PYTHON . DATA SOCIETY © 2017 122

DATA SOCIETY © 2017

