Using SQL With Python

In this lecture we will learn how to work with a SQL database using Python. Today we will
cover the following sections:

Getting a database up and running with MAMP and phpMyAdmin
Connecting your database into a Python script

SQL basics using a small sample data set

Using an ORM with a sizeable data set

MAMP and phpMyAdmin

Intro

We will be using MySQL as our database backend. MySQL requires a database server in order
to use it. You can either download the server software directly from the MySQL Website, or
through a third party such as MAMP. We have suggested the use of MAMP since it budles
several useful programs together, including phpMyAdmin, which provides a lightweight
database front end, and Apache web server, which allows us to use our computer to host a
local website.

To begin, launch MAMP and if they do not start automatically, click the "Start Servers"
button. In a few seconds, you should see green lights next to both Apache and MySQL server.

Now click the "Open start page'' button and click on Tools > phpMyAdmin. Alternatively, go
directly to http://localhost/phpMyAdmin in your internet browser.

Now we'll have to give ourselves a username on our local server (1ocalhost). Screenshots of
the following steps can be found in the phpmyadmin-create-user folder of your lecture
materials. In the top menu bar, click "User accounts." About halfway down on the page that
opens will be a link to "Add user account." Fill out the login information (top panel):

e User name - Create a user name for yourself
e Host name - Choose "Local"
e Password - Optional to create a password. Leave blank to skip

In the Global privileges section (third panel), you can click "Check all" to grant yourself all
privileges to databases on localhost.

The ss1 option in the following panel can be REQUIRE NONE.

Finally, to create the user click the "Go" button in the bottom right. Now we can begin using
Python to connect to our database server!

Creating a database

Now we'll create a database called fami1ydp. Still in phpMyAdmin, at the sidebar on the left,
simply click on the "+New" button to create a new database. Enter "familydb" as the name
for the database and click "Create". You do not need to create any tables; this will be done in
the next step.

Now that you have created a username and optional password, open the fami1ydb.py script
from Spyder, making sure to substitue your own username in the connection string at the
top:

connect to the db
import mysqgl.connector
dbconn = mysqgl.connector.connect (user="'ta anna', # substitute your user name here
password='"', # leave password blank if you
didn't create one
host='127.0.0.1",
database="'familydb")
cur = dbconn.cursor ()

Make sure your Spyder working directory is set to the family folder. Now run
familydb.py, which will create and populate the tables with some sample data.

In most cases, you will be working with an existing database, so you will not be populating it
yourself. However, if you are working on a research project, you will have to have a way to
load the data. Most database GUI's (such as phpMyAdmin and MySQL Workbench) have a
window interface to load a table from a file, but this will generally be too tedious for your
needs, and a code solution will be preffered.

There are many options for loading data, ranging from as simple as bulk loading a file from
the command line, to using what is called an object relational mapper (ORM) to parse and clean
each value before adding it to the database. In our first example we will not make use of an
ORM, but later we will see how to use one of the most popular ORM's: SQLAlchemy.

mysql Python library

We would like to work with a MySQL database from a Python script. This could be useful if
you're writing a script that reads or writes data from a database. We will see another use for
connecting a database to your Python script in the next lecture where we learn how to make a
basic web application with Python.

The documentation for the MySQL connector library can be found here.

To import the MySQL connector library, we write:

import mysqgl.connector

Then to make a connection to an existing database, we write:

dbconn = mysqgl.connector.connect (user="'MYUSERNAME ',

password='"', # leave password blank if you
didn't create one

host='127.0.0.1",

database="'familydb') # all of the queries we'll

do will use this database

Notice that the dbconn variable has type MysoLConnection. This object holds the connection
to the database. To run commands or sELECT statements, we need to create cursor object
from this connection:

cur = dbconn.cursor ()

The cursor allows us to run sqgl statements with the execute command:

cur.execute ('select * from person')
cur.fetchall ()

As an alternative, you can also say cur. fetchone () to select just the first result, or
cur.fetchmany (n), where for n you put the number of records you want.

Note that if you execute a statement that generates a result, you must fetch the results before
executing another statement. If you don't you will see the error: internalError: Unread

result found.

commit () for database operations

In addition to retrieving data, we can also run database operations through cur.execute ().
These do not return rows, but rather change something about the database such as adding or
modifying a table. However, any changes to the database must be committed in order to take
hold. For example we could write:

cur.execute ('DROP TABLE family')

This would run the drop command, but the table drop would be in a "pending" phase until
we commit it:

dbconn.commit () # note the commit () is a method of dbconn not cur

Only after the commit is the table permanently dropped. If you do not commit, the changes
will not be saved, and upon ending your session, the changes will be "rolled back", ie.,
everything will be reverted to before the change. You can run multiple commands before
committing. This way if any one of them hits an error, none of them will have been
committed.

SQL Basics

Relational vs Non-Relational databases

A relational database, which is the kind of database we will be working with, consists of
various tables that have explicit relationships to each other. The design of the tables has
historically followed a standard of using the least disk space as possible. However, this can
lead to complicated and sometimes computationally intensive queries. More recently, non-
relational databases (so called NoSQL "not only SQL"), have become popular. These store the
data in a less efficient way (worse for disk space usage), but at the benefit of faster and more
simple queries. As disk space has become quite cheap, this is an appealing tradeoff. In our
course, we will still concern ourselves with relational database, since their use is widespread.

MySQL Syntax

MySQL is just one of many different database management software products on the market.
Others include Microsoft SQL Server, Oracle, PostgreSQL, DB2, Teradata, and SQLite.
Generally speaking, all of these use the same basic query syntax. However they will typically
differ on specific functions. Most of what we show you here for MySQL will work with a
different database management system, but possibly with a slight change to syntax.
Additionally, different management systems will require different Python libraries to
incorporate with your code. We will be using the MySQL Connector library for Python. If
instead you were working with a PostgreSQL database, for example, you would use the
psycopg?2 Python library. It's just a matter of researching what library is used.

Tables and Data Types
Each table in a MySQL database is defined as follows:

CREATE TABLE family(
id INT PRIMARY KEY NOT NULL AUTO INCREMENT,
last name VARCHAR(50) NOT NULL

We define the table name, and the columns that it has. Each column must be given a data
type. By default, columns are allowed to have missing (null) values. If we want to disallow
missing values from a column, specify the noT nuLL keyword next to a column.

It is common practice for tables to have a primary key field defined. This can be any column
or columns that make each row of the table unique. Or we can simply have MySQL auto-
generate an incrementing number starting from 1. In this case, we create an id column for
the family, and specify ruto 1ncrEMENT which instructs MySQL to automatically create an
incrementing id.

The "full address" (or fully qualified name) of this table is familydb. family: you have
created the family table in the familydb database. As long as you are working within the
familydb database, you will not need to write the full name. Just be aware of what this
notation means because you will occasionally come across it.

Adding or Dropping columns

To add or drop columns from an existing table is as follows. To add a new column:

ALTER TABLE family member ADD COLUMN birthday month INT NULL

This adds a column called birthday__month to the family member table, with type of integer
and allowing nulls.

To drop a column is similar:

ALTER TABLE family member DROP COLUMN birthday month

Foreign Key relations

The main feature of relational databases is to store records that are related in some way. In
our example we have a family table and a family member table. Each family_ member
belongs to a family. We could specify each family _member's last name in the

family member table, but it will save us storage space in the database to simply store a
reference to the family table.

We create the family member table and then add a foreign key constraint to it. The foreign
key not only symbolizes the relationship between the tables, it also enforces it: if we try to
add a record to family member using a family id that does not existin family, the
database will block us from doing so. This means every person in family member is

guaranteed to have a corresponding family. The syntax for creating a foreign key is shown
below:

CREATE TABLE family member (
id INT PRIMARY KEY NOT NULL AUTO INCREMENT,
first name varchar (50) NOT NULL,
relation CHAR (1) NOT NULL,
birth date DATE NOT NULL,
current age INT,
family id INT NOT NULL,

ALTER TABLE family member
ADD CONSTRAINT fk family
FOREIGN KEY (family id)
REFERENCES family (id)
ON DELETE CASCADE

The family id column will contain the id from fami 1y of the family__member's family. This
way we don't have to store the last name in this table, which takes more space than storing
just the id. We explicitely define the relationship between family _member and family by
creating a foreign key on the family member table. We can choose a name to refer to the
foreign key; in this case we called it £k family. This specifies which columns establish the
link: the family idof family member, and the id column of family. The final keyword on
DELETE instructs MySQL what to do if someone's family is removed from the fami 1y table.
Setting this option to cAscaDe means that if a family is removed from the fami1y table, we

want to "cascade" this removal to all children, in other words, remove all corresponding
family members from the family member table.

Note: when creating and dropping tables, it is important to keep in mind any existing foreign
keys. You cannot create the family member table before you create the fami 1y table, because
the foreign key declaration will fail to find the fami 1y table. Additionally, if you want to drop
the family table, but keep the family member table, first drop the foreign key on

family member. Otherwise MySQL will not let you drop a table that is related to an existing
table. To drop a foreign key use the following syntax:

ALTER TABLE family member DROP FOREIGN KEY fk family;

I |
Relationship types

The example of family and family__member is called a one-to-many relationship. For any
one family, there are many people (family members). Note that "many" means 0, 1, or more.

Our database has an example of a many-to-many relationship as well: the relationship
between family member and interest. One family_member can have many interests, and
one interest can be had by many people. In a relational database, many-to-many
relationships are handled through an intermediate table. In our case, this is the

family member interest table: both the family member and interest tables have one-to-
many relationship to the intermediate table.

In your lecture materials you will find a diagram of the database in family-model.pdf. This
is called an entity-relation diagram. It shows each table and it's relationship to the others.
One to many relationships are shown with a line that has one slash on the "one" side, and a
"crows foot" on the "many" side.

Inserting data to a table

To add rows to our family table by hand, we could write:

INSERT INTO family(last name)
VALUES ('clarke'")

For each column that we specify -- just 1ast name in this case -- we provide a value. Note
that we do not have to specify the id column. For every column that we do not specify,
MySQL will place either a nuLL value, or if a default value is defined, the default. In our case,
the default for id is the auto incrementing id value, so the above statement will create a new
row with the id being the next value in the sequence.

Creating tables from a query

It will often be useful to create a table and populate it with the result of a query. To create a
new table from our family member table, we write:

CREATE TABLE family member first name
AS

SELECT id, first name

FROM family member

This will create the columns of the new table family member first name based on the
columns selected from the query. However, only the values from the table will be copied into
the new table; the new table will not have, for example, the same foreign keys, indexes, or
column default values defined -- you would have to add this next.

Temporary tables

It will be often useful to create temporary tables to store intermediate results of a complex
calculation. The syntax is the same as creating a regular table, only with the additional
TEMPORARY keyword. Typically temporary tables will be created as a result of a query:

CREATE TEMPORARY TABLE resultl AS
SELECT ...

The lifetime of a temporary table is your current connection to the database, which is called
your database session. Once your disconnect, any temporary tables are automatically dropped.

Truncating and Dropping tables

To remove all of the data in a table, use the TRUNCATE command:

TRUNCATE family member interest

To remove the table entirely, use the brop TABLE command:

DROP TABLE family member interest

It is not necessary to truncate a table before dropping it; you can drop the table right away.

If you run the above command a second time, you will receive an error from MySQL, since
the table no longer exists, so it cannot be dropped again. Often you have a script it which
depending on when it's run, the table may or may not exist, but you want to ensure the table
is dropped. Then the following syntax comes in handy:

DROP TABLE IF EXISTS family member interest

The query language

SQL statements make use of surprisingly few keywords. This section and the ones that follow
outline these commands.

The basic SELECT statement

To retrieve data from a single table, the query sytnax is:

SELECT columnl, column2,
FROM table
WHERE logical conditions
ORDER BY columnl, column? desc
LIMIT N
OFFSET M

Note that the database does not necessarily store the rows of a table in any particular order.
Different queries performed by you or other users may reorder the rows in your table. To
make sure the rows are returned in a particular order, specify an orDER BY condition.

The below query selects the youngest five members of the family member table. To select all
columns you can use a * instead of explicitely listing each column name.

SELECT *

FROM family member
ORDER BY current age
LIMIT 5

WHERE clause logical conditions

Here are some of the most common logical statements used in SQL wHERE clauses:

WHERE . . .

columnl < columnl

columnl = column?2

columnl <> column2 /* checks if they are not equal */

columnl <= column2

columnl between columnl and column2

columnl in (10, 14, 28, 30) /* checks if value of columnl is in a set of wvalues
*/

columnl not in (10, 14, 28, 30)

Just like in Python, logical statements can be combined with AnD or or. An example might be:

WHERE columnl > 7 AND column2 = 'a'

More complicated conditions can be applied with parentheses:

WHERE (columnl < 12 AND column2= 'a') OR (columnl >= 12 AND column2 = 'b")

Be very careful when using OR with a compound logical statement such as this one.
Remember, statements inside parentheses are evaluated first.

Changing values with UPDATE

We can modify specific values with an uppaTE .. seT command. The seT clause instructs
which column to modify and the new value to give it. To specify which values to modify, we
use as WHERE clause just as in selecting data. In the below example, we turn all of the m's in
the relation field into mother:

UPDATE family member
SET relation = 'mother'

WHERE relation = 'm' /* what happens if WHERE clause not present here? */

We can also have set seT use a calculation based on another column. For example, if we
create a new column for the birthday month:

ALTER TABLE family member ADD COLUMN birthday month INT NULL

we can populate it based on the birth date field using upPDATE:

UPDATE family member
SET

Deleting specific rows from a table

We saw earlier how to remove all of the rows in a table, and how to drop the table
completely. If we just want remove a few rows from the table, we can use pELETE. To specify
the rows to be deleted, we can use the same syntax for seLECTing specific rows:

DELETE FROM interest

WHERE interest = 'reading' /* removes reading from the interest table */

case statements

To derive a new column based on the values of other columns, we can use a case statement:

SELECT first name,

current age,

CASE WHEN current age < 18 THEN 'child' else 'adult' END AS age type
FROM family member

Notice how we provide a name for the derived column using s age type. This is called
aliasing a column. Any column can be aliased in this way, even those that are not derived.

Case statements can also be used to provide a custom sort order. If we want the relation
field to be sorted m, £, c, instead of the default alphabetical sorting, we can use a case
statement inside the orDER BY clause

SELECT family id, first name, relation
FROM family member
ORDER BY family id,
CASE relation
when 'm' then 1
when 'f' then 2
when 'c' then 3
END

If you simply used order by family id, relation, the relations would be sorted in
alphabetical order (c, f, m).

Notice that here we have used the more compact alternative syntax for the case statement.
When you are just testing different possible values of a single variable, you can use this syntax.
If the logic is more complicated, use the more general syntax from the previous example.

Go to Exercise: sgl-basics/exercise-1

Aggregation

Oftentimes, a column will have fewer distinct values than the total number of rows. It is then
possible to summarize by this column. If we take the contents of our family member table,
we see that there are fewer distinct values of the family id (5 values) spread over all 22
rOws:

SELECT *
FROM family member
order by family id, birth date

id first name relation birth__date current_age family id
2 francesca m 1964-11-18 52 1
1 mark f 1965-03-16 52 1
3 thomas C 1990-12-09 26 1
4 mary C 1992-08-21 25 1
5 helen C 1994-10-14 23 1
6 thomas f 1982-12-07 34 2
7 catherine m 1983-08-13 34 2
8 anthony C 2010-04-15 7 2
9 patricia C 2012-05-17 5 2
10 joseph C 2014-03-14 3 2
11 jim f 1988-09-01 29 3
12 theresa m 1989-07-06 28 3
13 adam C 2016-01-04 1 3
14 charles f 1969-05-21 48 4
15 cynthia m 1970-11-18 46 A
16 angela C 1995-06-01 22 VA
17 michael C 1997-05-29 20 A
19 roseanne m 1968-04-17 49 5
18 stephen f 1969-12-15 47 5

id first name relation birth_ date current_age family_id

21 samantha C 1994-12-12 22 5
22 kimberly C 1996-11-15 20 5
20 margaret C 1999-06-19 18 5

We can treat each distinct value of the family idasa "group", and compute calculations on
each group. For example, to get the total number of members in each group, we would write:

SELECT family id, count(*) as num members
FROM family member
GROUP BY family id

family_ id num_ members
1 5
2 5
3 3
4 4
5 5

Note the crour BY keyword is crucial. This tells MySQL how to define the groups. If you leave
this out, the query will run, but the result will not be what you expect.

Other aggregation funcitons you can use are sum (), avg (), max (), and min (). For example:

SELECT family id, count(*) as num members,
max (current age) as oldest age,
avg (current age) as avg_age,
min (current age) as youngest age

FROM family member

GROUP BY family id

A complete list of MySQL aggregate functions can be found here.

We can group by multiple variables as well. This defines groups and subgroups. If we get a
distinct family idand a distinct relation, for example, then there is one group for each
unique combination of family idand relation.

SELECT family id, relation, count(*)
FROM family member
GROUP BY family id, relation

Or we could ask, how many people have birthdays in each month?

SELECT EXTRACT (month from birth date) as bday month, count(*) as num people
FROM family member

GROUP BY 1

ORDER BY 1

bday__month num__people
1 1
3 2
A 2
5 3
6 2
7 1
8 2
9 1
10 1
1 3

12 A

Notice that only the months that appear in the data will show up in this query. For example,
there are no February birthdays, so there is no row in the results for February. We do not see a
row with (February, o). It is important to remember this phenomenon because you will likely
come across it fairly often.

What does the * mean in count (*)?

Count, like the other aggregation functions, can be given a column as an argument. However,
be aware that count (last name), for example, counts only the non null values of 1ast name.
If a group has 4 rows, but in one of them the 1ast name field is null, count (1ast name) will
return 3, which may or may not be the behavior you need. To count event non-null values,
you could either use count (x) where the coumn x is a column you know won't contain nulls.
However the best way to handle this is to say count (*). This counts all of the rows in the
group, as opposed to values in a particular column. This may not seem impotant now, but it
will useful when we learn about outer joins.

Aggregation with a WHERE clause

We might ask: "How many members of each family are over age 30¢" This can be answered
with:

SELECT family id, count (*)
FROM family member

WHERE current age >= 30
GROUP BY family id

Filtering on an aggregated value with HAVING

A wHERE clause applies a filter to each row of the original data. What if we want to filter after
we have computed the aggregate? For example, we may want to know which months have at
least 2 birthdays in them. We can add a HavING statement after our Group BY to filter based

on the aggregate value (the count):

SELECT EXTRACT (month from birth date) as bday month, count (*)
FROM family member

GROUP BY 1

HAVING count (*) >= 2

Aggregation trick using case statements

Extending the sample from above, what if we wanted to answer multiple similar questions
with only a single query? For example,

1. How many members of each family are over age 30?

2. How many children in each family are older than 4?
3. How many members of each family have a birthday in December?

We could write three separate queries like the one in the previous section. However there is a
trick we can use taking advantage of case statements that allows us to answer all three with
a single query:

SELECT family id,

sum(case when current age >= 30 then 1 else 0 end) as gt30,
sum(case when relation = 'c' and current age > 4 then 1 else 0 end) as cgt4,
sum(case when EXTRACT (month from birth date) = 12 then 1 else 0 end) as bdayl2

FROM family member
GROUP BY family id

family id gt30 cgts bday12
1 2 3 1
2 2 2 1
3 0 0 0
4 2 2 0
5 2 3 2

Go to Exercise: sgl-basics/exercise=-2

Union

To combine two or more select statements "by rows'" we can use the unron keyword. The
select statements must contain the same number of columns, and each corresponding
column must have the same data type. The column must be specified in the same order:
MySQL will not make an attempt to match columns names together. The column names and
data types will be taken as those from the first query.

Let's create an example with our family member table.

SELECT first name as "First Name",
birth date as "Date of Birth",
relation as "Relation to Family"
FROM family member
WHERE relation = 'm'

UNION
SELECT first name, birth date, relation

FROM family member
WHERE relation = 'f'

Note: This example is a bit contrived because we could have just as easily gotten the same result
using a single query with a wHERE clause. The typical use case for unTon is when the two record
sets are in different tables.

To repeat: It is extremely important that the column names match up. The following query
will run because the number of columns is the same and the corresponding data types are the
same. But the output will not be what you expect:

/* examplel of incorrect UNION query - column misaligned in second query*/
SELECT first name, birth date, relation

FROM family member

WHERE relation = 'm'

UNION
SELECT relation, birth date, first name /* different column ordering */

FROM family member
WHERE relation = 'f'

Joins

To combine record sets "by columns', we make use of the SQL Join. Suppose we want to
display each person with their first and last name. These are stored in different tables: the
family member table has the first name, and is linked to the fami1y table via the family id
column. To get both the first and last name side by side, we join the tables on the family id:

SELECT a.id as family member id, b.id as family id, first name, last name,
birth date
FROM family member as a
JOIN family as b
ON a.family id = b.id

It is common to alias the table names (as in above, family member is aliased as table "a",
and family is aliased as table "b'"). Then when we need to refer to a column name from one
of the tables, we can use the shorthand a. family id, etc. Without the alias, you would need
to say family member.id and family.1id, so the alias saves you some time. You can choose
an alias that makes sense, for example fm and £ would have been clearer than = and b.

If both tables contain a column of the same name, it is essential to qualify the column with
the table name, in order to avioid ambiguity; for example both tables have a column called
id, so we must qualify these as a.id and b. id. Only the family member table has a column
called birth date so it is not necessary to provide the table name or alias there.

Note that we have chosen a useful convention for naming columns. The idfield in familyis
named family idwhen it appearsin other tables. Inthe family table we just call it id, not
family id. Thisisa standard convention, however you are free to use a convention that
makes the most sense to you or your organization.

More complex join conditions

We can use joins to answer more complicated questions. As an example, suppose we wanted
to show pairs of individuals where for each person, we show everyone who is younger than
that person. The following example (which uses a "self join" -- joining a table to itself --
answers this question.

SELECT a.id as id younger, a.first name as first name younger, a.current age as
current age younger,
b.id as id older, b.first name as first name older, b.current age as
current age older
FROM family member as a
JOIN family member as b
ON a.birth date > b.birth date
ORDER BY a.birth date desc, a.first name, b.birth date desc

Outer joins

In the first example above, each row in family member was guaranteed to have a match in
the family table, thanks to our foreign key constraint. Often however, it might not be the
case that for each value in the first table (often called the "left" table) there is a matching
value in the second table (often called the "right" table).

SELECT family member id, first name, interest id
FROM family member as a
JOIN family member interest as b

on a.id = b.family member id

order by family member id

Notice that person numbers 1, 5, 19, and 22 are missing from this table. Question: Why is this
and how can you prove it?

In the case that there's no guarantee of a match in the right table, but we want to retain
every value in the left table no matter what, we can use an outer join (as opposed to inner join
which we just did). This will keep everything on the left table (including people 1, 5, 19, and
22), and whatever matches on the right. If there is no match on the right, we will still see the
value from the left, and all of the right-hand side columsn will have avalue of nUTL.

The only difference to perform an outer join is to replace Jo1N with LEFT OUTER JOIN, Or
simply LEFT JOTN:

SELECT a.id, first name, interest id

FROM family member as a

LEFT JOIN family member interest as b
on a.id = b.family member id

order by a.id
/* note with an outer join, it matters which table we use in the order by! */

Note, there is also a right outer join, but it would simply be equivalent to switching the order of
the two tables and using a left join. For this reason it is hardly used.

The left join above is very useful for aggregation. If we wanted to get a count of each person's
interests we could write:

SELECT a.id, count (interest id) as num interests
FROM family member as a
LEFT JOIN family member interest as b
on a.id = b.family member id
GROUP BY a.id
ORDER BY a.id

We use the count of the right hand side column interest id, because we know it will be null
in the case of no match, and count (x) only counts non-null values of the column x.
Therefore we see a row with (id=1, num__interests=0), etc. Had we used an inner join instead,
there would be no row containing person numbers 1, 5, 19, and 22, which may not be what we
want.

We can also look at the second more complex example. Remember there are two individuals
of age 52, which is the oldest age in the family member table: Francesca and Mark, and
Francesca is slightly older. So where is Francesca in our results? She does not appear on the
left hand side, because there was no match on the right hand side for her, i.e., no one was
found who is older that she.

So we can change the query to do a left join instead:

SELECT a.id as id younger, a.first name as first name younger, a.current age as
current age younger,
b.id as id older, b.first name as first name older, b.current age as
current age older
FROM family member as a
LEFT JOIN family member as b
ON a.birth date > b.birth date
ORDER BY a.birth date desc, a.first name, b.birth date desc

Now we see a row with Francesca on the left, and simply a blank (null) value on the right.
Cross join

A cross join is simply an inner join, where the on condition is always true. For example:

SELECT a.last name, Db.last name

FROM family as a

JOIN family as b

ON 1 =1 /* always true, so every row in table a will be matched with every row
in table b*/

This type of query is seldom used, but is presented her for sake of completeness.

Question: if you take the cross join of two tables A and B, and table A has 500 rows and table
B has 600 rows, how many rows will you get back?

Subqueries

We have seen joins used two combine two tables, but the inputs to a join need not be tables.
You can also use a query, surrounded by parentheses, as a pseudo-table, such as in the
following example:

SELECT a.id, last name, min_age, max_age
FROM family as a
JOIN
(SELECT family id, min(current age) as min age, max(current age) as max age
FROM family member
GROUP BY family id) as b /* "table" b is called a subquery */
ON a.id = b.family id

Subqueries are extremely useful for combining information on the fly. Complicated
subqueries however can become computationally expensive, and then it becomes better to
create a temporary table instead.

Note: you must provide an alias for the subquery (for example 'as b'above, otherwise you will
get an error: "Every derived table must have its own alias."

Question Go through each of the four columns in the result set and be sure you know where
they came from.
Multiple joins

There's no reason to limit ourselves to two joins. The following query combines fami 1y,
family member, and a subquery that counts the number of interests per member.

SELECT first name, last name, birth date, coalesce(n, 0) as num interests
FROM family as a
JOIN family member as b
ON a.id = b.family id
LEFT JOIN (
select family member id, count(*) as n
from family member interest
group by 1) as c
ON b.id = c.family member id

Note: the left join will return a null value for n when there is no interests for that person. To
convert a null to some other value, such as 0 in our case, we use the coalesce function.

Question: What would we get if the third table was family member interest itself, and not
this condensed subquery?

Go to Exercise: sgl-basics/exercise-3

Indexing for better query performance

Computers are able to perform a lot of calculations very quickly. If the size of your tables is
no more than a few hundred rows, you should not have to do any type of engineering to have
fast running queries. However, as the size of your data grows, you will need to consider
different strategies for performance. While this is a huge area, we will talk about one strategy
that can greatly improve the speed of queries with wxaERE clauses and / or joins.

First a bit of background. When you make the following query, for example:

SELECT *
FROM family member
WHERE relation = 'c'

the database engine reads every row in the table and decides whether or not to keep it. This is
called a full table scan, and can become very time consuming as the size of the table grows. If
this is a waeERE clause that you need to use often, you can put an index on the relation field.
Think of an index as a phonebook for the column. In the process of creating an index, the
database first finds the unique values of this column (which are 'm','f'; and 'c'). It then looks
up which rows each of these values appear on. So next time you run a query with wHERE
relation = 'c', it already has the location of these values stored in its phonebook, and it
doesn't need to scan every row. Note however, an index will of course take up storage space
in order to hold all of this information. So the tradeoff is storage space for query speed, and
most developers lean towards the latter, since space is less costly than computing power.

To create this index, use the following syntax:

CREATE INDEX idx family member relation ON family member (relation);

To drop an index the syntax is simply:

DROP INDEX idx family member relation on family member

The name idx family member relation can be whatever we choose. Use a naming
convention that makes sense to you.

By the same reasoning as above, indexing columns that are going to be frequently joined on
will greatly speed up the join performance:

SELECT first name, last name, birth date
FROM family as a

JOIN family member as b

on a.id = b.family id

To create these indexes, use the following syntax:

CREATE INDEX idx family ON family (id);
CREATE INDEX idx family member ON family member (family id);

Note: MySQL automatically puts an index on columns used in foreign keys. This is because you
will be presumably be making this join often. You can drop the index at any time with DROP
INDEX.

Getting metadata from information schema

In addition to any databases you may create (also called schemas in MySQL), there are some
built-in schemas that are automatically created and maintained by MySQL. One such schema
is called information schema. You will not see it in your list of databases in the left-side
panel of phpMyAdmin or MySQL Workbench, but you can nevertheless query from it.

Two very useful tables are information schema.tables and
information schema.columns. Take a look at the tables you have created so far with the
following query:

SELECT *
FROM information schema.tables
WHERE table schema = 'familydb'

Replace this with information schema.columns to see the columns in each of the tables.

Question: What are all of the tables available in the information schema?

*ORM's: SQL-less queries

This section is provided as optional, for those who are already proficient in SQL. It is not
necessary to learn ORM's to complete your capstone project: your code will look a little nicer
with one, but they have a steeper learning curve. It is more important that you are confident in
knowing what your code is doing.

Note: In this section we will interact with our databases using the sqialchemy library as
opposed to the mysql.connector from the first part of the lecture. Make sure to keep the two
syntaxes straight!

As we have seen, even some straightforward sounding questions can be decently complicated
to answer with a SQL query, sometimes requiring several subqueries. In addition, unless you
have a high level of comfort with the language, some queries are non-intuitive to write, and
therefore could be error-prone in the hands of an inexperienced programmer.

Object Relational Mappers (ORM) exist precisely to combat these issues. An ORM allows us to
do all of the SQL operations we've learned, such as creating tables and retrieving rows, while
only ever writing in Python! This way, the syntax is much more readable, and database
operations are approachable for someone who has experience with Python but not SQL. There
are a number of ORM's but the most popular is SQLAlchemy.

To use SQLAlchemy with MySQL, we will need to activate an additional library through
Anaconda. Open Anaconda Navigator, and click on the Environments tab at the left. Click on
the search bar on the right-hand side and type pymysql. When the result appears, check the
box, and then click Apply. This will lead you through the process of activating the library.

Go back to Spyder and type the following into your IPython console to make sure all the
necessary libraries are available:

from sglalchemy import create engine

engine = create engine('mysgl+pymysqgl://ta anna@localhost/sampledb')

If both of these statements work, then you are ready to begin using SQLAlchemy.

Python Classes

SQLAIchemy makes extensive use of Python Classes, so we will describe these here. A Class is
no more than a template to build an object. Suppose I was maintaining a list of addresses. I
might have a script that looks like this:

addrl = {'street num': 3700, 'street': 'O St NW',

'city': 'Washington', 'state': 'DC', 'zip5': '20057'}
addr2 = {'street num': 2400, 'street': 'Sixth St NW',

'city': 'Washington', 'state': 'DC','zip5': '20059'}
addr3 = {'street num': 2121, 'street': 'I St NW',

'city': 'Washington', 'state': 'DC', 'zip5': '20052'}
addr4 = {'street num': 4400, 'street': 'Massachusetts Ave NW',

'city': 'Washington', 'state': 'DC', 'zip5': '20016'}
addresses = [addrl, addr2, addr3, addri4]

There might be different things I'd need to do with an address. I could write a function for
whatever that may be:

def print address (addr) :
return '{street num} {street}\n{city}, {state} {zip5}'.format (**addr)

What if we dealt with addresses in many different scripts? We would always need to create
these functions. Also notice that every address is a dictionary with the same key. Classes let
us take advantage of the similiar structure of each address dictionary, and allow us to
"bundle" functions in one place that we want to use on this type of object.

To convert this example to use a class is as follows:

class Address (object) :
def init (self, street num, street, city, state, zip5):
self.street num = street num
self.street = street
self.city = city
self.state = state

self.zipb = zip5

def fmt(self) :
return '{street num} {street}\n{city}, {state}
{zip5}'.format (**self. dict)

addrl = Address (3700, 'O St NW', 'Washington', 'DC', '20057")
addrl.street
print (addrl. fmt ())

We'll go through each part one by one:

e The name of this class is Address. It is customary to use title case for class names.

e The addr1 variable that gets created after the class definition is an instance of the
Address class. Remember: '""class' means template, and "instance" means an object
that was built from that template.

e The Address class "inherits" from the object class. We'll get to inheritance later, but
for now just know that inheriting from the object class (which is part of base python),
means that Address will automatically have some useful features.

e The init method. Every class must contain this, since it tells python how to
construct your object (hence, init isalso referred to a the constructor function).
The arguments are whatever the values you want the user to provide. init hasa
parculiar first argument: self. Think of self as a stand-in for any instance that might
get created. For example, when we created addr1, the various arguments we provided,
such as 3700 for street num, were attached to that instance. By giving a value to
self.street num = ..., this means we can later write addr1.street num to retrieve
its street number. Any of the values assigned to self are called instance attributes.

e Both init and fmt are example of methods. There are different types of methods
which we won't cover here, but just to note that these two are examples instance
methods. Being an instance method means every instance of the class (for example
addr1) will be able to use this method. This is why we can say addr1.fmt (). Notice how
the fmt method makes use of instance attributes via self.

e It is required for every instance method to take se1f as the first argument. Notice
though that we don't need to provide a value for self when we call the method. For
example we don't need to say addr1. fmt (addr1). There is nothing in the code above
that explains why this is the case, just know that instance methods are bound to every
instance, meaning the sel f argument is automatically populated with the instance
that's calling the method.

Class inheritance

We can create a subclass of a class, which means we will take the existing template of the
class as a starting point and then modify it somehow. Subclasses contain all of the attributes
and methods of the parent class, and we can choose to modify any of them.

As an example, we'll look at the SQLAIchemy Bz se class, which will be inherited by all of the
classes we will create. The Base class is set up to be a template for a database table. It
internally stores information about connection to the database, and keeps track of what
tables are in the database. In addition, it lets us create our database tables without writing
any SQL.

As we mentioned, to have a class inherit another class, we specify the parent class in the
class declaration:

different data types need to be imported

from sglalchemy import Column, Integer, String, Date

class Family (Base) :
__tablename = 'family'
id = Column (Integer, primary key=True)
last name = Column (String(50))

When we use SQLAlIchemy, we create subclasses of the Base class, which is a class provided
by SQLALchemy. Each of the subclasses we make will correspond to (map) a table in our
database. For each subclass, we provide the name of the table via tablename . This
particular attribute is special to Base and lets it know what the name of the table is. Note that
there is no mention of sel¢ here. This means tablename isbound to the class, and not
instances of the class. For this reasons it's called a class attribute.

After the tablename , we see column definitions. Note that the same information is
provided about each column that we provided in the SQL create table statement, but the
way it is provided uses familiar-looking Python syntax.

Exercise:

Complete the rest of the tables: FamilyMember, FamilyMemberInterest, and Interest. Save as
a file called model.py. You will need to include the following lines at the top of the script:

from sglalchemy.ext.declarative import declarative base

Base = declarative base()

engine = create engine('mysgl+pymysqgl://ta anna@localhost/sampledb')
replace "ta anna" with your username

Base.metadata.bind = engine

Querying with sQLAlchemy

Now that we have created an object mapping for each of our database tables, we can work
with them as if they were regular python objects. To begin working with the database, we will
need to create a session. This is similar to how we created a cursor object before.

from sglalchemy.orm import sessionmaker
DBSession = sessionmaker (bind=engine)

session = DBSession|()

To do a simple select statement from the family member table we write:

q = session.query (FamilyMember)

people = g.all()

or more compact:

people = session.query (FamilyMember) .all ()

To add a wHERE statement is as follows:

adults = session.query(FamilyMember) .filter (FamilyMember.current age >= 18).all()

