
DATA SOCIETY © 2017 1

SQL + PYTHON DATA SOCIETY © 2017

DATA SOCIETY ®

The premiere data science training for professionals

“One should look for what is and not what he thinks should be.”
- Albert Einstein

SQL + PYTHON DATA SOCIETY © 2017

1.  Create a database with MAMP and phpMyAdmin

2.  Connect your database to a Python script

3.  Run basic SQL queries on a sample data set

4.  Use an object relaLonal mapper (ORM) for larger data sets

1

Objec&ves

DATA SOCIETY © 2017 2

SQL + PYTHON DATA SOCIETY © 2017

1.  Overview of SQL & imporLng data

2.  ConnecLng to your database in Python

3.  AdjusLng tables and foreign keys

4.  CreaLng tables in a database

5.  Performing basic statements in SQL

6.  Performing UNIONS and JOINS in SQL

7.  Advanced: using ORMs for larger databases

2

Outline

SQL + PYTHON DATA SOCIETY © 2017

•  SQL is short for Structured Query Language. It is the standard language used to
communicate with most relaLonal databases
–  SQL queries are sent to a database to ask it to perform a specific task with the data it

stores

•  MicrosoY SQL Server is a type of relaLonal database

3

What is SQL?

VS

DATA SOCIETY © 2017 3

SQL + PYTHON DATA SOCIETY © 2017

•  Learn to Import/Export, manipulate, combine, and aggregate data sets using
MySQL

•  These lessons are structured with the intent of using SQL server as an
intermediary to store and aggregate data as displayed in the image below

4

Goals for Intro to SQL

Data Storage
& AggregaLon Analysis

Source Data Upload Upload

Export / Import
for Analysis

Export / Import
for Storage

SQL + PYTHON DATA SOCIETY © 2017 5

Why use SQL?
SQL Access Excel

Data Size Limits Best op:on for analyzing large data sets (over
1 million records)

Handles larger data sets than Excel, but can
be limited by memory and space of local
computers

Limited to 1,048,576 records for data sets

Manipula:ng
Data

Mul:ple queries can easily be combined to
coerce data from mul:ple data sets

Querying capabili:es similar to SQL with less
flexibility and capabili:es

Combining data sets can be difficult and
prone to manual and formula errors

Analyzing /
Repor:ng Data

Limited built-in analysis func:ons and lack of
built-in repor:ng and visualiza:on capabili:es

Built in form and report capabili:es for easy
repor:ng, but more limited set of analysis
func:ons

Many built in analysis func:ons,
visualiza:ons, and forma^ng for easy
modeling and repor:ng

Speed Faster Processing Slower processing Slower Processing

Compa:bility

Compa:ble with most visualiza:on, business
intelligence, and sta:s:cal analysis pla`orms

Compa:ble with many visualiza:on, business
intelligence, and sta:s:cal analysis pla`orms

Compa:ble with most visualiza:on, business
intelligence, and sta:s:cal analysis pla`orms

Quality Control SQL Queries create repeatable and auditable
analysis processes that can be clearly
commented

Access Queries also create repeatable
processes, but are oaen less transparent than
SQL queries

Excel Analyses are harder to replicate due to
manual steps that can be difficult to audit

Learning Curve Can be easy to learn for people without a
programming background

Can be easy to learn for people without a
programming background

Easy to learn for any analyst

Great Average Limited

DATA SOCIETY © 2017 4

SQL + PYTHON DATA SOCIETY © 2017

1.  Overview of SQL & imporLng data

2.  ConnecLng to your database in Python

3.  AdjusLng tables and foreign keys

4.  CreaLng tables in a database

5.  Performing basic statements in SQL

6.  Performing UNIONS and JOINS in SQL

7.  Advanced: using ORMs for larger databases

6

Outline

SQL + PYTHON DATA SOCIETY © 2017

•  Go to h_ps://dev.mysql.com/downloads/workbench/
– NoLce the secLon called "MySQL Workbench Windows Prerequisites." You may need to

come back to this page, so keep it open.
– Go to the bo_om of the page and click the

Download bu_on.

•  You will be asked to create an Oracle Web
account in order to proceed. You can click on
"No thanks, just start my download."

Download install file

7

DATA SOCIETY © 2017 5

SQL + PYTHON DATA SOCIETY © 2017

•  Double click on the downloaded .msi file to begin installaLon of MySQL Workbench.
•  You may receive a warning that you need either Visual C++ and / or .NET. If so, go

back to the MySQL website “Prerequisite” secLon and download the appropriate
requirement(s).
–  If installing Visual C++, choose the x64 version (shown below).

•  Once the prerequisites are met, re-launch the Workbench installer.

Check prerequisites

8

SQL + PYTHON DATA SOCIETY © 2017

•  Click through the installaLon guide:
–  Install locaLon: Keep default
–  Setup Type: “Complete”
–  ConfirmaLon screen: Click “Install”

•  When finished, you can check the
box to launch MySQL Workbench,
and click Finish.

•  MySQL Workbench will open.

Run installer

9

DATA SOCIETY © 2017 6

SQL + PYTHON DATA SOCIETY © 2017

Now we will set up MySQL Workbench to connect to our database server. Make sure
you have completed the MAMP installaCon steps before aDempCng this part.
•  Start MAMP Servers.
•  Go to Preferences > Ports and take note of the MySQL Port number (probably 3306).

10

Connect to your database server

SQL + PYTHON DATA SOCIETY © 2017

•  Open h_p://localhost/phpMyAdmin/ in your browser and go to User Accounts > Add
User Account.

11

Connect to your database server

DATA SOCIETY © 2017 7

SQL + PYTHON DATA SOCIETY © 2017

•  Fill out the informaLon as shown below. Create a user name and password. The host name
should be “localhost.” You can “Check all” for privileges.

•  Leave SSL opLon to “Require None”
•  Press the “Go” bu_on at the bo_om right to complete the new user creaLon. You have just

made yourself a superuser on localhost server!

12

Connect to your database server

SQL + PYTHON DATA SOCIETY © 2017

•  Go back to Workbench and click the “+” icon next to “MySQL ConnecLons” to
connect to your database server with Workbench.

Connect to your database server

13

DATA SOCIETY © 2017 8

SQL + PYTHON DATA SOCIETY © 2017

•  Name the connecLon “myserver,” enter
“localhost” for host name, your
username, and your MySQL port
number you checked in MAMP
(probably 3306).

•  If you want Workbench to store your
password, you can click the “Store in
Vault” bu_on, and enter the password
you created in the previous step.

•  Make sure the connecLon works by
clicking “Test ConnecLon” in the lower
right of the window. AYer entering the
password, it should say “Successfully
made the MySQL ConnecLon.”

•  Click Ok, to create the connecLon.

Connect to your database server

14

SQL + PYTHON DATA SOCIETY © 2017

•  Double click on your new connecLon to open it.

Connect to your database server

15

DATA SOCIETY © 2017 9

SQL + PYTHON DATA SOCIETY © 2017

•  You should see a list of “schemas” at
the leY, which should be the same as
those displayed on the leY-hand panel
of phpMyAdmin.

•  The middle panel of the screen should
be a blank query window. (If not, click
the +SQL () icon under the File
menu).

•  Enter the example query shown here,
and then press the lightning bolt icon
to execute it.

•  You’ve run your first SQL query!

Connect to your database server

16

Query output

SQL + PYTHON DATA SOCIETY © 2017

1.  Overview of SQL & imporLng data

2.  ConnecLng to your database in Python

3.  AdjusLng tables and foreign keys

4.  CreaLng tables in a database

5.  Performing basic statements in SQL

6.  Performing UNIONS and JOINS in SQL

7.  Advanced: using ORMs for larger databases

17

Outline

DATA SOCIETY © 2017 10

SQL + PYTHON DATA SOCIETY © 2017

•  What is a relaLonal database?
– RelaLonal databases store data in the form of tables that can be related to one another

based on common a_ributes in the columns and rows of those tables
–  SQL Queries can leverage these relaLonships to rearrange the data stored in database

tables

18

Intro to rela&onal databases

People

•  Contact ID
•  Contact Name
•  SSN
•  Phone Number

Accounts
•  Contact ID
•  Business ID
•  Account Number
•  Account Balance

Business
•  Business ID
•  Industry
•  Business Name

Customer Database

SQL Query

Analysis
•  Business Name
•  Industry
•  Contact Name
•  Phone Number
•  Account Balance

SQL + PYTHON DATA SOCIETY © 2017

•  Servers

•  Databases

•  Tables

19

SQL Server general components

SQL	SQL	
SQL	

•  Server – database servers are programs
that provides database services to other
computer programs

•  Database – is a container of data/
informaLon organized into tables (and
other structures) so that they can be
easily managed and accessed back in
same fashion.

•  Table – data stored in a tabular format
with rows of named columns

DATA SOCIETY © 2017 11

SQL + PYTHON DATA SOCIETY © 2017

•  First, go to h_p://localhost/phpMyAdmin/

20

Crea&ng a database

SQL + PYTHON DATA SOCIETY © 2017

•  Under "Create database", type in 'familydb', and click "Create"

21

Crea&ng a database

Click "Create" to create
the new database

DATA SOCIETY © 2017 12

SQL + PYTHON DATA SOCIETY © 2017

•  You should see the new database on the leY-hand side

22

Crea&ng a database

Don't worry if there are no tables
– we'll add them next!

SQL + PYTHON DATA SOCIETY © 2017

In order to pracCce SQL queries, you will need to run the
familydb.py file in the 'family' folder. Please refer to the appendix for

more detailed informaCon about building SQL tables in Python.

23

Popula&ng a database

DATA SOCIETY © 2017 13

SQL + PYTHON DATA SOCIETY © 2017

Connec&ng to a database
First, import the MySQL connector library if you haven't already.
import mysql.connector

Then, connect to an existing database:
dbconn = mysql.connector.connect(user='MYUSERNAME',
 password='',
 host='127.0.0.1',
 database='familydb')

24

1.  Type in your username
2.  Leave blank if you didn't

use a password
3.  Type in the local host
4.  Type in the database name

Make sure your Spyder working directory is set to the `family`
folder to pull data from it – then run the familydb.py file

familydb.py

SQL + PYTHON DATA SOCIETY © 2017

Running SQL in Python
The dbconn variable has a MySQLConnection type. This object holds
the connection to the database. To run commands or SELECT statements,
we need to create cursor object from this connection:
cur = dbconn.cursor()

The cursor allows us to run SQL statements with the execute command:
cur.execute('select * from person')
cur.fetchall()

To select the first result, type:
cur.fetchone()

To select a number of results, type:
cur.fetchmany(n)

25

familydb.py

If you execute a statement that generates a result, you must fetch the results before execuCng another
statement. If you don't, you will see the error: InternalError: Unread result found.

'n' stands for the number
of results you want

DATA SOCIETY © 2017 14

SQL + PYTHON DATA SOCIETY © 2017

commit() for database opera&ons
In addition to retrieving data, we can also run database operations.
These operations will change something about the database.
cur.execute('DROP TABLE family')

However, the DROP command is "pending" until we run commit().
dbconn.commit()

26

familydb.py

If you do not run commit(), the changes will be 'rolled back'
once the session is ended.

This is a method of dbconn, not cur

SQL + PYTHON DATA SOCIETY © 2017

•  RelaLonal database: consists of various tables that
have explicit relaLonships to each other
– Uses less disk space, but needs a schema (roadmap) for the

tables
– Uses SQL to query data, edit it, and rearrange it

•  Non-relaLonal databases (NoSQL): document-
oriented databases with non-structured data that isn't
necessarily categorized into fields
–  Takes up more storage than relaLonal databases, but is

becoming more popular given the decreasing cost of
storage

–  Simpler and faster queries

Rela&onal vs non-rela&onal databases

Images from h_p://bigdata.iexperLfy.com/wp-content/uploads/2013/09/NoSQL.jpg

27

DATA SOCIETY © 2017 15

SQL + PYTHON DATA SOCIETY © 2017

•  MySQL is just one of many different database
management soYware products on the market.
Others include MicrosoY SQL Server, Oracle,
PostgreSQL, DB2, Teradata, and SQLite.

•  Most of what we show you here for MySQL will work
with a different database management system, but
possibly with a slight change to syntax.

•  We will be using the MySQL Connector library for
Python

MySQL syntax

28

SQL + PYTHON DATA SOCIETY © 2017

•  Each table in a MySQL database is defined as follows:

•  The "AUTO_INCREMENT" notaLon tells MySQL to auto-generate an incremenLng
number starLng from 1 to generate an 'id' column for a primary key

•  The "full address" of this table is familydb.family – referencing the family table
from the familydb database

29

Tables and data types

CREATE TABLE family(

 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(50) NOT NULL
)

SQL

ID
Define
column

Don't allow
null values

Generates
incremenLng ID

Data
type

Defines the columns in the table

Defines the table name as 'family'

DATA SOCIETY © 2017 16

SQL + PYTHON DATA SOCIETY © 2017

•  Adding columns to an exisLng table:

•  Dropping columns from an exisLng table:

30

Adding or dropping columns

 ALTER TABLE family_member ADD COLUMN birthday_month INT NULL

SQL

Change table
Table
name

Allow null
values Column name

Data
type Add column

 ALTER TABLE family_member DROP COLUMN birthday_month

SQL

Change table
Table
name Column name Drop column

SQL + PYTHON DATA SOCIETY © 2017

•  Constraints are sets of rules imposed on the columns of a table or the table as a
whole to limit the type of data going into that table.

•  Constraints help insure the accuracy and integrity of a database and it’s tables

31

Table constraints in brief

•  PRIMARY Key - a column (or columns) that serve as unique idenLfier for each
row of data in a table consisLng of 1 or more fields. Primary keys must not have
null or duplicate values

•  FOREIGN Key - a column (or columns) that corresponds to a primary key in
another table acLng as a cross reference between tables

•  NOT NULL – ensures that a column does not contain NULL values
•  DEFAULT – SubsLtutes a default value for a column when no value is provided
•  UNIQUE - Ensures all values in a column are different
•  INDEX – Stores indexed values from one or more columns to retrieve data quickly

from a table

Constraint Examples

DATA SOCIETY © 2017 17

SQL + PYTHON DATA SOCIETY © 2017

•  Foreign keys ensure and enforce a relaLonship between tables
–  i.e. if we have a family_member table and add a foreign key constraint, we can't add a

record to it that is not cross-referenced in the main family table
–  So every record in the family_member table is guaranteed to have a corresponding

reference in family

32

Foreign key rela&ons

Family_ID Name First_name
1 Johnson Robert
2 Ma_hewson ChrisLan
3 Lee Mary
4 Johnson Carey

[Family] [Family member]

First_Name RelaLon
Robert c

ChrisLan f
Carey m

Primary	Key	
Foreign	Key	

Foreign Key to
Primary Key
Relationship

SQL + PYTHON DATA SOCIETY © 2017

•  The syntax for creaLng a foreign key is shown below:

33

Foreign key rela&ons

CREATE TABLE family_member(
 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
 first_name varchar(50) NOT NULL,
 relation CHAR(1) NOT NULL,
 birth_date DATE NOT NULL,
 current_age INT NOT NULL,
 family_id INT NOT NULL,
);

ALTER TABLE family_member
 ADD CONSTRAINT fk_family
 FOREIGN KEY (family_id)
 REFERENCES family(id)
 ON DELETE CASCADE
;

SQL

Defining the columns of the
table family member

1.  Specifies which table to alter
2.  IdenLfy the name of the constraint
3.  IdenLfy the column for foreign key
4.  IdenLfy the table (column) to refer to

Tells SQL to delete entries from the child table if they're
deleted from the parent table

DATA SOCIETY © 2017 18

SQL + PYTHON DATA SOCIETY © 2017

•  When you are creaLng and dropping tables, you need to keep in mind any
exisLng foreign keys

•  If you want to drop a parent table without deleLng the children tables, you
have to drop the foreign key first

•  Below is the syntax you can use to drop a foreign key:

34

Dropping foreign keys

ALTER TABLE family_member DROP FOREIGN KEY fk_family;

SQL

SQL + PYTHON DATA SOCIETY © 2017

1.  Overview of SQL & imporLng data

2.  ConnecLng to your database in Python

3.  AdjusLng tables and foreign keys

4.  CreaLng tables in a database

5.  Performing basic statements in SQL

6.  Performing UNIONS and JOINS in SQL

7.  Advanced: using ORMs for larger databases

35

Outline

DATA SOCIETY © 2017 19

SQL + PYTHON DATA SOCIETY © 2017

There are several types of relaLonships between table records. These
relaLonships include:

36

Rela&onship types

•  One-to-One - each record in one table will have no more than one
matching record in a second table, and vice versa.

•  One-to-Many - each record in one table can have many matching
records in a second table; however, each record in the second table can
only have one matching record in the first table.

•  Many-to-Many – records in one table can have many matching records
in a second table, and vice versa.

SQL + PYTHON DATA SOCIETY © 2017

One-to-Many relaLonships exist when each records in one table may relate to
numerous records in another table.

37

One-to-Many rela&onships

Account Total Charge
A153 $25
B634 $125
B754 $12

Account Items Purchased
A153 Pizza
A153 Bread
B634 GiY Card
B754 Soda
B754 Sports Drink

[Charges] [Items Purchased] One to Many

DATA SOCIETY © 2017 20

SQL + PYTHON DATA SOCIETY © 2017

Many-to-Many relaLonships exist when records in one table can have many
matching records in a second table, and vice versa.

38

Many-to-Many rela&onships

ArLcle Views
War Time Human Right ViolaLons 50
Trends in Modern Contract Law 100

Data Driven Enterprise Decisions 75
Perils of Investment Banking 25

Advanced Text Mining Techniques 30

[PublicaLons] [Authors]

Author LocaLon
John LA

Merav MD
Dmitri VA
Katya VA

Many to Many

SQL + PYTHON DATA SOCIETY © 2017

family
id INT(11)

last_name VARCHAR(50)

Indexes

family_member
id INT(11)

first_name VARCHAR(50)

relation CHAR(1)

birth_date DATE

current_age INT(11)

family_id INT(11)

Indexes

family_member_interest
id INT(11)

family_member_id INT(11)

interest_id INT(11)

Indexes

interest
id INT(11)

interest VARCHAR(50)

Indexes

•  Here is a diagram of the database we built

39

The en&ty-rela&on diagram

This symbol denotes the 'one' side
of a one-to-many relaLonship

This symbol denotes the 'many' side
of a one-to-many relaLonship

DATA SOCIETY © 2017 21

SQL + PYTHON DATA SOCIETY © 2017

•  If you want to add rows to a table by hand, you can write:

•  Note: we don't need to specify the id column – for every column not specified,

MySQL will place either a NULL value or default value

•  Since we defined the auto incremenLng id value, the new row generated will
have the next value in the sequence

40

Inser&ng data into a table

INSERT INTO family(last_name) VALUES ('clarke')

SQL

Insert a value into table (column). The value is 'clarke'.

SQL + PYTHON DATA SOCIETY © 2017

•  It is oYen useful to create a table and populate it with the result of a query:

•  This creates columns of the new table 'family_member_first_name', based on

the columns selected from the query, 'id' and 'first_name'

Note: this only imports the values, it does not have the same foreign keys,
 indexes, or column default values

41

Crea&ng tables from a query

CREATE TABLE family_member_first_name
AS
SELECT id, first_name
FROM family_member

SQL 1.  Table to create

2.  Values to select
3.  Table to grab values from

DATA SOCIETY © 2017 22

SQL + PYTHON DATA SOCIETY © 2017

•  Temporary tables are useful to store intermediate results of a complex
calculaLon

•  Typically, these tables are created as a result of a query

•  The lifeLme of a temporary table is the same as your current connecLon to the
database – once it's disconnected, the tables are automaLcally dropped

42

Temporary tables

CREATE TEMPORARY TABLE result1
AS
SELECT ...

SQL 1.  Table to create

2.  Values to select

SQL + PYTHON DATA SOCIETY © 2017

•  To remove all the data in a table, use the TRUNCATE command

•  Drop columns from an exisLng table with the DROP command

•  If you run the above command a second Lme, you'll receive an error from MySQL since the
table no longer exists – if you want to ensure that the table doesn't exist, you can add the IF
EXISTS syntax

43

Trunca&ng and dropping tables

 TRUNCATE family_member_interest

SQL Truncate Table name

 DROP TABLE family_member_interest

SQL Change table Table name

 DROP TABLE IF EXISTS family_member_interest SQL

DATA SOCIETY © 2017 23

SQL + PYTHON DATA SOCIETY © 2017

Database

•  OYen tables imported from another environment are not ready for analysis
•  When preparing for an analysis think of three types of tables:
– Raw – immediately imported
– Intermediate – some data wrangling has been performed
•  Ex: dates might be imported as text and require transformaLon into a date format for analysis

– Analysis – table has been aggregated and prepared for analysis

44

3 stages of data tables

Source Data
Tables

SQL Import Analysis Results
and Reports

Raw Tables Raw Tables Raw Tables

Intermediat
e Tables
Intermediat

e Tables
Intermediate

Tables
Transform Prep

Intermediat
e Tables
Intermediat

e Tables
Analysis
Tables

Analysis

*Note: it is a best pracLce to name tables to disLnguish these table types (Ex. tbl_Raw_Procurement_Data _2016)

SQL + PYTHON DATA SOCIETY © 2017

1.  Overview of SQL & imporLng data

2.  ConnecLng to your database in Python

3.  AdjusLng tables and foreign keys

4.  CreaLng tables in a database

5.  Performing basic statements in SQL

6.  Performing UNIONS and JOINS in SQL

7.  Advanced: using ORMs for larger databases

45

Outline

DATA SOCIETY © 2017 24

SQL + PYTHON DATA SOCIETY © 2017

There are many different data types
in SQL Server; however, there are 3
main data type categories:

•  Numeric: contains numbers and can be
used in mathemaLcal operaLons

•  Character: contains strings of text and
can be searched for words and phrases
or concatenated

•  Date: contains dates and/or Lmes that
are stored as number allowing date type
fields to also be used in mathemaLcal
operaLons

46

SQL data types

Numeric	 Character	 Date	
1	 A123F	 1/01/2000	

-2,000	 Coffee	is	a	great	way	
to	start	off	your	day	

2005-07-01	
00:00:00:000	

$250.35	 Automobile	 June	16	2013	
0.0023464	 Desk	 Monday,	January	31	

2002	

Data type examples

Examples of data types
Numeric Data Types
•  Int
•  Money
•  Decimal

Character Data Types
•  Char
•  Varchar
•  Nvarchar

Date Data Types
•  DateLme
•  Date
•  Time

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql

SQL + PYTHON DATA SOCIETY © 2017

•  NULL values are non-exisLng records in a field. They are different from "blank" or
"zero-length” string values (i.e. “”)
– NULL values are excluded from aggregate funcLons:
•  Example: when SQL counts the number of records in the ID_Number column (“COUNT(ID_Number)”)

it returns a count of 2
– NULL values do not link to one another when they are in a field being used as the

relaLonship for combining tables

•  To locate NULL values, use “IS NULL” (or “IS NOT NULL”) in a WHERE clause
–  Example: “WHERE ID_Number IS NULL” would return only row 3 in the table below

47

NULLs

NULL Values

BLANK Values

DATA SOCIETY © 2017 25

SQL + PYTHON DATA SOCIETY © 2017 48

Query examples and explana&on
• SQL Queries follow a standard order of statements that must

be followed in each query for SQL server to understand a query
– Not all statements are required for every query, but the same order of

commands must be maintained

1. SELECT
2. INTO
3. FROM
4. WHERE
5. GROUP BY
6. HAVING
7. ORDER BY

SQL + PYTHON DATA SOCIETY © 2017

•  To retrieve data from a single table, the query syntax is:

49

The SELECT statement

SELECT column 1, column 2,...
FROM table
WHERE logical conditions
ORDER BY column1, column2 desc
LIMIT N
OFFSET M

1. SELECT – defines the fields that will be included
in the new table requested by a query from other
tables and from funcLons

2. FROM – defines the exisLng tables that a query
will draw data from

3. WHERE – filters the query results based on
criteria from the original tables

4. ORDER BY – sorts the query results in order by
the indicated fields

5. LIMIT – limits the number of records based on
the value

6. OFFSET – excludes the first M number of
records

SQL

DATA SOCIETY © 2017 26

SQL + PYTHON DATA SOCIETY © 2017

•  This query selects the five youngest members from the 'family_member' table

•  The database does not necessarily store the rows of a table in any parLcular
order - different queries performed by you or other users may reorder the rows

•  To make sure the rows are returned in a parLcular order, specify an ORDER BY
condiLon.

50

The SELECT statement

SELECT *
FROM family_member
ORDER BY current_age
LIMIT 5

SQL You can use * to select all columns

SQL + PYTHON DATA SOCIETY © 2017

•  Below are some of the most common logical statements used in SQL WHERE
clauses

51

WHERE clause logical condi&ons

WHERE...
 column1 < column1
 column1 = column2
 column1 <> column2
 column1 <= column2
 column1 between column1 and column2
 column1 in (10, 14, 28, 30)
 column1 not in (10, 14, 28, 30)

SQL

Checks if they are not equal

Checks if value of column1 is in a set of values

DATA SOCIETY © 2017 27

SQL + PYTHON DATA SOCIETY © 2017

•  Similar to Python, logical statements can be combined with AND or OR:

•  More complicated condiLons can be applied with parentheses:

52

WHERE clause logical condi&ons

 WHERE column1 > 7 AND column2 = 'a'

SQL

 WHERE (column1 < 12 AND column2 = 'a')
 OR (column1 >= 12 AND column2 = 'b')

SQL

Be very careful when using OR with a compound logical statement
such as this one. Remember, statements inside parentheses are

evaluated first.

SQL + PYTHON DATA SOCIETY © 2017

•  We can modify specific values with an UPDATE...SET command

•  We can have SET use a calculaLon based on another column – here, we will

create a new birthday month column and populate it based on birth_date

53

Changing values with UPDATE

 UPDATE family_member
 SET relation = 'mother'
 WHERE relation = 'm'

SQL 1.  Update the specified table
2.  Instructs the column to modify and the new value to give it
3.  Specifies which values to modify

 ALTER TABLE family_member ADD COLUMN birthday_month INT NULL
 UPDATE family_member
 SET

SQL

DATA SOCIETY © 2017 28

SQL + PYTHON DATA SOCIETY © 2017

•  You can use DELETE to idenLfy specific rows that you want to remove

54

Dele&ng rows from a table

 DELETE FROM interest
 WHERE interest = 'reading'

SQL

removes reading from the interest table

SQL + PYTHON DATA SOCIETY © 2017

•  You can use a CASE statement to derive a new column based on the values of
other columns

•  Providing a new name with AS is called aliasing a column – any column can be
aliased this way, even those that are not derived

55

The CASE statement

SELECT first_name,
 current_age,
 CASE WHEN current_age < 18 THEN 'child' else 'adult' END
 AS age_type
FROM family_member

SQL

New column name defined by AS

DATA SOCIETY © 2017 29

SQL + PYTHON DATA SOCIETY © 2017

•  CASE statements can also provide a custom sort order

•  If we had only ordered by 'family_id' and 'relaLon', the relaLons would be
sorted in alphabeLcal order (c, f, m)

56

The CASE statement

SELECT family_id, first_name, relation
FROM family_member
ORDER BY family_id,
 CASE relation
 when 'm' then 1
 when 'f' then 2
 when 'c' then 3
 END

SQL

Here, we're sorLng by m, f, c

SQL + PYTHON DATA SOCIETY © 2017

•  OYenLmes, a column will have fewer disLnct values than the total number of
rows. It is then possible to summarize by this column.

57

Aggrega&ng data

SELECT *
FROM family_member
ORDER BY family_id, birth_date

SQL

DATA SOCIETY © 2017 30

SQL + PYTHON DATA SOCIETY © 2017

58

Aggrega&ng data

We can noLce that there are fewer
disLnct values of the 'family_id'
column

SQL + PYTHON DATA SOCIETY © 2017

•  We can treat each disLnct value of the family_id as a "group", and compute
calculaLons on each group. For example, to get the total number of members in
each group, we would write:

59

Aggrega&ng data

SELECT family_id, count(*) as num_members
FROM family_member
GROUP BY family_id

SQL

Tells MySQL how to define the groups

DATA SOCIETY © 2017 31

SQL + PYTHON DATA SOCIETY © 2017

•  Other aggregaCon funcCons you can use are sum(), avg(), max(), and min(). For
example:

•  Y

•  You can go here for addiLonal funcLons:
h_ps://dev.mysql.com/doc/refman/5.5/en/group-by-funcLons.html

60

Addi&onal aggrega&on func&ons

SELECT family_id, count(*) as num_members,
 max(current_age) as oldest_age,
 avg(current_age) as avg_age,
 min(current_age) as youngest_age
FROM family_member
GROUP BY family_id

SQL

SQL + PYTHON DATA SOCIETY © 2017

•  You can group by mulLple variables as well. This defines groups and subgroups. If we
get a disLnct family_id and a disLnct relaLon, for example, then there is one group for
each unique combinaLon of family_id and relaLon.

•  Or we can ask "How many people have birthdays in each month?"

61

Group by mul&ple variables

SELECT family_id, relation, count(*)
FROM family_member
GROUP BY family_id, relation

SQL

SELECT EXTRACT(month from birth_date) as bday_month,
count(*) as num_people
FROM family_member
GROUP BY 1
ORDER BY 1

SQL
Extract the month from
the birth date

DATA SOCIETY © 2017 32

SQL + PYTHON DATA SOCIETY © 2017

62

Group by mul&ple variables

Note that only the months that
appear in the data will show up –
there are no February birthdays, so
there is no birthday month 2.

SQL + PYTHON DATA SOCIETY © 2017

63

What does the * mean in count(*)?
•  Count, like the other aggregaLon funcLons, can be given a column as an

argument, but it won't count the nulls

•  You can use count(*) to count all of the rows in the group, as opposed to
values in a parLcular column. This may not seem important now, but it will
useful when we learn about outer joins.

DATA SOCIETY © 2017 33

SQL + PYTHON DATA SOCIETY © 2017

•  We might ask "how many members of each family are over age 30?"

•  Filtering by HAVING is helpful if we want to filter aYer we have computed the

aggregate?

64

Aggrega&on with WHERE

SELECT family_id, count(*)
FROM family_member
WHERE current_age >= 30
GROUP BY family_id

SQL

SELECT EXTRACT(month from birth_date) as bday_month,
FROM family_member
GROUP BY 1
HAVING count(*) >= 2

SQL

Here, we're extracLng the months that
have at least two birthdays

SQL + PYTHON DATA SOCIETY © 2017

•  What if we want to answer these three quesLons:
– How many members of each family are over age 30?
– How many children in each family are older than 4?
– How many members of each family have a birthday in December?

65

Combining aggrega&ons

SELECT family_id,
 sum(case when current_age >= 30 then 1 else 0 end) as gt30,
 sum(case when relation = 'c' and current_age > 4 then 1 else 0 end) as cgt4,
 sum(case when EXTRACT(month from birth_date) = 12 then 1 else 0 end) as bday12
FROM family_member
GROUP BY family_id

SQL

DATA SOCIETY © 2017 34

SQL + PYTHON DATA SOCIETY © 2017

1.  Overview of SQL & imporLng data

2.  ConnecLng to your database in Python

3.  AdjusLng tables and foreign keys

4.  CreaLng tables in a database

5.  Performing basic statements in SQL

6.  Performing UNIONS and JOINS in SQL

7.  Advanced: using ORMs for larger databases

66

Outline

SQL + PYTHON DATA SOCIETY © 2017

•  UNION combines two or more select statements 'by rows' – the statements
must contain the same number of columns and data types

67

Unions

SELECT first_name as "First Name",
 birth_date as "Date of Birth",
 relation as "Relation to Family"
FROM family_member
WHERE relation = 'm'

UNION

SELECT first_name, birth_date, relation
FROM family_member
WHERE relation = 'f'

SQL

Note: This example is a bit contrived because we could
have just as easily go_en the same result using a single
query with a WHERE clause. The typical use case for

UNION is when the two record sets are in different tables.

DATA SOCIETY © 2017 35

SQL + PYTHON DATA SOCIETY © 2017

•  It is extremely important that the column names match up, otherwise the
output may not be what you expect

68

Unions

SELECT first_name, birth_date, relation
FROM family_member
WHERE relation = 'm'

UNION

SELECT relation, birth_date, first_name
FROM family_member
WHERE relation = 'f'

SQL

This is a different column
order than above

SQL + PYTHON DATA SOCIETY © 2017

SQL tables can be combined using JOIN or UNION statements to merge columns
or records respecLvely

69

SQL table combina&ons

UNION JOIN

•  A JOIN brings columns from 2 different tables into a
combined table

•  The combined table can have more or fewer records than
its parent tables depending on both the relaLonship
between records on the parent tables and the type of
join performed

•  A UNION appends records from 2 tables into a combined
table

•  The combined table will have more records than its
parent tables assuming no filtering is applied to either
table

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A2 Ripken
A3 Johnson

ID First Name Last Name
A1 John Smith
A2 Samantha Ripken
A3 Paul Johnson

ID First Name Last Name
A1 John Smith
A2 Samantha Ripken

ID First Name Last Name
A3 Paul Johnson
A4 Taylor Prince

ID First Name Last Name
A1 John Smith
A2 Samantha Ripken
A3 Paul Johnson
A4 Taylor Prince

DATA SOCIETY © 2017 36

SQL + PYTHON DATA SOCIETY © 2017

A table alias allows a table to be temporarily renamed within the scope of an
individual query. This makes queries easier to read and limits the amount of code
required for a query to execute.

70

Using table aliases

Sample

SELECT a.id as family_member_id,
 b.id as family_id, first_name, last_name, birth_date
FROM family_member as a
JOIN family as b

 ON a.family_id = b.id

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First
Name

ID Last
Name

A1 John A1 Smith
A3 Paul A3 Johnson

[First] [Last]

Result

The aliases of “a” and “b” are used to
replace tables family_member and
family respecLvely for indicaLng the
source of each field in the query

Code

Aliases can be assigned with or without “AS” following a table name

SQL + PYTHON DATA SOCIETY © 2017

•  Suppose we wanted to show pairs of individuals where for each person, we
show everyone who is younger than that person

•  The following example uses a "self join" - joining a table to itself – to answer
this quesLon.

71

More complex join condi&ons

SELECT a.id as id_younger, a.first_name as first_name_younger,
 a.current_age as current_age_younger,
 b.id as id_older, b.first_name as first_name_older,
 b.current_age as current_age_older
FROM family_member as a
JOIN family_member as b
ON a.birth_date > b.birth_date
ORDER BY a.birth_date desc, a.first_name, b.birth_date desc

SQL

DATA SOCIETY © 2017 37

SQL + PYTHON DATA SOCIETY © 2017

•  It might not always be the case that every value in the first ("leY") table matches
a value in the second ("right") table:

•  Here, the results show us that we're missing person numbers 1, 5, 19, and 22
are missing from this table

•  An outer join (as opposed to inner join) will retain every value in the leY table
•  If there is no match on the right, we will sLll see the value from the leY, and all

of the right-hand side column will have a value of NULL.

72

Outer joins

SELECT family_member_id, first_name, interest_id
FROM family_member as a
JOIN family_member_interest as b
 on a.id = b.family_member_id
order by family_member_id

SQL

SQL + PYTHON DATA SOCIETY © 2017

•  The only difference to perform an outer join is to replace JOIN with LEFT
OUTER JOIN, or simply LEFT JOIN:

•  Note, there is also a right outer join, but you just need to switch the order of
the two tables and using a leY join. For this reason it is hardly used.

73

LeV joins

SELECT a.id, first_name, interest_id
FROM family_member as a
LEFT JOIN family_member_interest as b
 on a.id = b.family_member_id
 order by family_member_id

SQL

Note with an outer join, it ma_ers which
table we use in the order by!

DATA SOCIETY © 2017 38

SQL + PYTHON DATA SOCIETY © 2017

•  If we wanted to get a count of each person's interests, we could run the
following code:

•  The right-hand side column interest_id will be null in the case of no
match, and count(x) only counts non-null values of the column x.

74

LeV joins

SELECT a.id, count(interest_id) as num_interests
FROM family_member as a
LEFT JOIN family_member_interest as b
 on a.id = b.family_member_id
GROUP BY a.id
ORDER BY a.id

SQL

SQL + PYTHON DATA SOCIETY © 2017

•  Francesca and Mark are both 52 years old, which is the oldest age in the
family_member table

•  Since Francesca is slightly older, she does not appear on the leY hand side of our
results because there was no match on the right hand side for her, i.e., there was no
one found who is older than her

•  So we can change the query to do a leY join instead:

75

LeV joins: more advanced

SELECT a.id as id_younger, a.first_name as first_name_younger,
 a.current_age as current_age_younger,
 b.id as id_older, b.first_name as first_name_older,
 b.current_age as current_age_older
FROM family_member as a
LEFT JOIN family_member as b
 ON a.birth_date > b.birth_date
ORDER BY a.birth_date desc, a.first_name, b.birth_date desc

SQL

DATA SOCIETY © 2017 39

SQL + PYTHON DATA SOCIETY © 2017

•  A cross join is simply an inner join, where the `ON` condiLon is always true

76

Cross joins

SELECT a.last_name, b.last_name
FROM family as a
JOIN family as b
 ON 1 = 1

SQL

Always true, so every row in table a will be
matched with every row in table b

If you take the cross join of two tables A and B,
and table A has 500 rows and table B has 600 rows,

how many rows will you get back?

SQL + PYTHON DATA SOCIETY © 2017

•  You can use a query, surrounded by parentheses, as a pseudo-table, such as in the
following example:

•  Subqueries are extremely useful for combining informaLon on the fly, but can become
computaLonally expensive – it may be be_er to create a temporary table

77

Subqueries

SELECT a.id, last_name, min_age, max_age
FROM family as a
JOIN
 (SELECT family_id, min(current_age) as min_age, max(current_age) as max_age
 FROM family_member
 GROUP BY family_id) as b
ON a.id = b.family_id

SQL

"Table b" is called a subquery

Note: you must provide an alias for the subquery (for example 'as b' above,
otherwise you will get an error: "Every derived table must have its own alias."

DATA SOCIETY © 2017 40

SQL + PYTHON DATA SOCIETY © 2017

•  It is extremely important that the column names match up, otherwise the
output may not be what you expect

78

Mul&ple joins

SELECT first_name, birth_date, relation
FROM family_member
WHERE relation = 'm'

UNION

SELECT relation, birth_date, first_name
FROM family_member
WHERE relation = 'f'

SQL

This is a different column
order than above

SQL + PYTHON DATA SOCIETY © 2017

•  It is extremely important that the column names match up, otherwise the
output may not be what you expect

79

Indexing for beXer query performance

SELECT first_name, birth_date, relation
FROM family_member
WHERE relation = 'm'

UNION

SELECT relation, birth_date, first_name
FROM family_member
WHERE relation = 'f'

SQL

This is a different column
order than above

DATA SOCIETY © 2017 41

SQL + PYTHON DATA SOCIETY © 2017

•  It is extremely important that the column names match up, otherwise the
output may not be what you expect

80

Indexing for beXer query performance

SELECT first_name, birth_date, relation
FROM family_member
WHERE relation = 'm'

UNION

SELECT relation, birth_date, first_name
FROM family_member
WHERE relation = 'f'

SQL

This is a different column
order than above

SQL + PYTHON DATA SOCIETY © 2017

•  It is extremely important that the column names match up, otherwise the
output may not be what you expect

81

GeYng metadata from informa&on_schema

SELECT first_name, birth_date, relation
FROM family_member
WHERE relation = 'm'

UNION

SELECT relation, birth_date, first_name
FROM family_member
WHERE relation = 'f'

SQL

This is a different column
order than above

DATA SOCIETY © 2017 42

SQL + PYTHON DATA SOCIETY © 2017 82

Joining logic comparison

A B A B A B A B

Outer JoinsInner Joins
Inner Join Left Outer Join Right Outer Join Full Outer Join

Cross Join Left Outer Join
(w/ Exclusion)

Right Outer Join
(w/ Exclusion)

Full Outer Join
(w/ Exclusion)

A B A BA B

A B

A1

A2

A3

B1

B2

B3

A B

A NULL

A NULL

A B

B NULL

B NULL

A B

B NULL
A NULL

B NULL
A NULL

SQL + PYTHON DATA SOCIETY © 2017

1.  Overview of SQL & imporLng data

2.  ConnecLng to your database in Python

3.  AdjusLng tables and foreign keys

4.  CreaLng tables in a database

5.  Performing basic statements in SQL

6.  Performing UNIONS and JOINS in SQL

7.  Advanced: using ORMs for larger databases

83

Outline

DATA SOCIETY © 2017 43

SQL + PYTHON DATA SOCIETY © 2017

•  Pay a_enLon to the row counts!
–  Is the number of rows what you expect?
•  A common problem is assuming that a field or combinaLon of fields represents a unique value. When

that is not the case you can see an increase in record count.
•  Another common issue is incorrectly se~ng criteria of a join or WHERE clause and excluding more

records than were originally intended.

– Use simple queries on each original table to compare the number of records with given
criteria to the number in the joined table.

–  It is also helpful to use LEFT and/or RIGHT joins to determine the overlap between
tables and whether:
•  The fields you are using to link the original tables are appropriate.
•  The tables themselves are appropriate to combine for an analysis (2 tables can appear to be similar

data from field names but actually contain li_le to no overlap).

84

Quality control &ps for joins

SQL + PYTHON DATA SOCIETY © 2017

Logical operators test whether or not a condiLon is true. They are generally used
in CASE Statements, JOINs, WHERE clauses, HAVING clauses.

Comparison Operators:

85

Logical operators: comparisons

Operator	 Operator	name	 Descrip:on	
=	 Equal	 True	when	the	1st	value	equals	the	2nd	value	being	tested	
<>	 Not	equal	 True	when	the	1st	value	does	not	equals	the	2nd	value	being	tested	
!=	 Not	equal	
<	 Less	than	 True	when	the	1st	value	is	less	than	the	2nd	value	being	tested	
<=	 Less	than	or	equal	to	 True	when	the	1st	value	is	less	than	or	equal	to	the	2nd	value	being	tested	
!>	 Not	greater	than	
>	 Greater	than	 True	when	the	1st	value	is	greater	than	the	2nd	value	being	tested	

	
>=	 Greater	than	or	equal	to	 True	when	the	1st	value	is	greater	than	or	equal	to	the	2nd	value	being	

tested	!<	 Not	Less	than	

DATA SOCIETY © 2017 44

SQL + PYTHON DATA SOCIETY © 2017

Logical operators test whether or not a condiLon is true. They are generally used
in CASE Statements, JOINs, WHERE clauses, HAVING clauses.

Comparison Operators:

86

Logical operators: comparisons

Operator	 Descrip:on	
IN	 True	when	values	being	tested	match	values	in	a	list	of	values	specified	either	

as	a	query	resul]ng	in	1	column	or	a	list	of	values	separated	by	commas	
BETWEEN	 True	when	values	being	tested	are	within	an	inclusive	range	(lower	and	upper	

values	are	searched	as	well	as	the	values	in	between)	
LIKE	 True	when	values	being	tested	match	a	paberns	in	character	fields	specified	

acer	the	LIKE	operator	
NOT	 used	to	reverse	the	logic	of	the	IN,	BETWEEN,	or	LIKE	operators	to	negate	

condi]ons	(i.e.	a	query	containing	“	WHERE	NOT	LIKE	‘%data%’	“	would	return	
all	records	that	do	not	contain	“data”	anywhere	in	the	string	being	tested)	

SQL + PYTHON DATA SOCIETY © 2017

The LIKE clause matches pa_erns of text to a character field. It is important to
understand how to leverage special characters (“%” , “_”, “[”, “]”, and “^”) to
accurately match pa_erns.
– Wildcard - characters that subsLtute for any other character in a string
•  “%” - used to represent zero or more characters and is typically used before and/or aYer the part of

text being searched for to look for that text anywhere in the character string
•  “_” - used to represent 1 character

–  Specified pa_erns - Brackets “[]” can be used to specify lists or ranges of characters or
numbers that should be represented by a character in a pa_ern
•  Using “^” aYer the opening bracket changes exclude the characters following it (ex. “[^m]” matches

any le_er other than “m”)

–  Escape - The special characters listed above (“%” , “_”, “[”, and “]”) need to be treated
differently than others. They either need to be included in brackets or placed aYer an
escape character

87

Logical operators: LIKE

DATA SOCIETY © 2017 45

SQL + PYTHON DATA SOCIETY © 2017

MulLple logical operators can be strung together by relaLng them with AND or OR
statements.

•  AND - used to connect two or more condiLons and only returns those rows

meeLng all condiLons

•  OR - used to connect two or more condiLons and returns any rows that meet
any of these condiLons

•  Order of logical operations: “()” à “AND” à “OR”

88

Mul&ple logical operators

SQL + PYTHON DATA SOCIETY © 2017 89

Performance: argument order

Fastest

Slowest

OR
AND

•  Try to use a leading character with LIKE
(ex. LIKE 'm%' instead of LIKE '%m‘)

•  Use LIKE instead of SUBSTRING with =

•  Be careful with OR
•  If mulLple ANDs, put least likely condiLon

first
•  If equally likely, put least complex

condiLon first

<>

LIKE
>,>=,<,<=

=

DATA SOCIETY © 2017 46

SQL + PYTHON DATA SOCIETY © 2017

•  Restrict result sets by using WHERE or only selecLng the columns needed

•  Use WHERE with HAVING when appropriate

•  ORDER BY is inefficient; sort results in a separate step

90

Performance: query structure

SQL + PYTHON DATA SOCIETY © 2017

•  Backup your database, but don't store excessive copies of the backup

•  Choose between temp tables and views

•  Use appropriate field types (avoid using NVARCHAR)

91

Performance: space efficiency

DATA SOCIETY © 2017 47

SQL + PYTHON DATA SOCIETY © 2017 92

Ques&ons?

SQL + PYTHON DATA SOCIETY © 2017

APPENDIX

93

DATA SOCIETY © 2017 48

SQL + PYTHON DATA SOCIETY © 2017

Crea&ng tables in database
Next, we will populate our database with tables.
tables=[
{
'name': 'family',
'query': """
create table family(

 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(50) NOT NULL
)
"""
},

94

1.  Name of the table
2.  Sets up the query
3.  Create the table 'family'

familydb.py

ID
Data
type

Define
column

Don't allow
null values

Generates
incremenLng ID

4.  These lines name and define
a_ributes of the fields that will
populate the empty tables being
created

CREATE TABLE family(
 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(50) NOT NULL
)

SQL

Example of what the
code translates to in SQL

SQL + PYTHON DATA SOCIETY © 2017

Crea&ng tables in database
...Continued from the previous slide...
{
'name': 'interest',
'query': """
create table interest(

 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
 interest VARCHAR(50) NOT NULL
)
"""
},

95

1.  Name of the table
2.  Sets up the query
3.  Create the table 'interest'

familydb.py

ID
Data
type

Define
column

Don't allow
null values

Generates
incremenLng ID

4.  These lines name and define
a_ributes of the fields that will
populate the empty tables being
created

CREATE TABLE interest(
 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
 interest VARCHAR(50) NOT NULL
)

SQL

DATA SOCIETY © 2017 49

SQL + PYTHON DATA SOCIETY © 2017

•  Constraints are sets of rules imposed on the columns of a table or the table as a
whole to limit the type of data going into that table.

•  Constraints help insure the accuracy and integrity of a database and it’s tables

96

Table constraints in brief

•  PRIMARY Key - a column (or columns) that serve as unique idenLfier for each
row of data in a table consisLng of 1 or more fields. Primary keys must not have
null or duplicate values

•  FOREIGN Key - a column (or columns) that corresponds to a primary key in
another table acLng as a cross reference between tables

•  NOT NULL – ensures that a column does not contain NULL values
•  DEFAULT – SubsLtutes a default value for a column when no value is provided
•  UNIQUE - Ensures all values in a column are different
•  INDEX – Stores indexed values from one or more columns to retrieve data quickly

from a table

Constraint Examples

SQL + PYTHON DATA SOCIETY © 2017

Crea&ng tables in database
...Continued from the previous slide...
{
 'name': 'family_member',
 'query': """
 create table family_member(
 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
 first_name varchar(50) NOT NULL,
 relation CHAR(1) NOT NULL,
 birth_date DATE NOT NULL,
 current_age INT NOT NULL,
 family_id INT NOT NULL, �
)
"""
 },

97

1.  Name of the table
2.  Sets up the query
3.  Create the table 'family member'
4.  Here we define all the columns in

the table

familydb.py

CREATE TABLE family_member(
 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
 first_name varchar(50) NOT NULL,
 relation CHAR(1) NOT NULL,
 birth_date DATE NOT NULL,
 current_age INT NOT NULL,
 family_id INT NOT NULL,
);

SQL

DATA SOCIETY © 2017 50

SQL + PYTHON DATA SOCIETY © 2017

Crea&ng tables in database
...Continued from the previous slide...
{
 'name': 'family_member_interest',
 'query': """
 create table family_member_interest(
 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
 family_member_id INT NOT NULL,
 interest_id INT NOT NULL
)
"""
 }
]

98

1.  Name of the table
2.  Sets up the query
3.  Creates the table

'family_member_interest'
4.  Defines all the columns in the

table

familydb.py

SQL + PYTHON DATA SOCIETY © 2017

1.  Overview of SQL & ImporLng data

2.  ConnecLng to your database

3.  CreaLng tables in a database

4.  Adding foreign keys and adjusLng data

5.  Performing basic statements in SQL

6.  Performing UNIONS and JOINS in SQL

7.  Advanced: using ORMs for larger databases

99

Outline

DATA SOCIETY © 2017 51

SQL + PYTHON DATA SOCIETY © 2017

•  Combining data accurately from tables in a database or from disparate sources
requires a thorough understanding of how fields in those tables are related

•  Failure to understand these relaLonships can result in duplicate or missing records
that can materially impact the results of your analysis

100

Importance of table rela&onships

Cust_ID Name State
1 John VA
2 Ma_ VA
3 Lee CA
4 John MN

Cust_ID Name Purch_ID amt
1 John 1 $10.50
2 Ma_ 2 $5.00
3 Lee 3 $2.00
4 John 4 $4.25
1 John 5 $9.25

[Customers]

[Purchases]

SELECT A.*
SELECT A.State, sum(B.amt) as State_Purchases

 FROM #Customers A
 JOIN #Purchases B
 ON A.Cust_ID = B.Cust_ID
 GROUP BY A.State

SELECT A.*
SELECT A.State, sum(B.amt) as State_Purchases

 FROM #Customers A
 JOIN #Purchases B
 ON A.Name = B.Name
 GROUP BY A.State

State State_Purchases
CA 2
MN 4.25
VA 24.75

State State_Purchases
CA 2
MN 24.00
VA 29.00

What are the total purchases from each state?

SQL + PYTHON DATA SOCIETY © 2017

•  In order to maintain data quality and integrity between related tables, it is important
to define those relaLonship through conceptual (or someLmes physical) constraints on
table fields called keys.

•  There are 2 main types of keys to note for this course:
–  Primary Key – a column (or columns) that serve as unique idenLfier for each row of data in a

table consisLng of 1 or more fields
•  Primary keys must not have null or duplicate values

–  Foreign Key – a column (or columns) that corresponds to a primary key in another table acLng
as a cross reference between tables

101

Table keys

Cust_ID Name State
1 John VA
2 Ma_ VA
3 Lee CA
4 John MN

[Customers] [States]
State State_Name
CA 2
MN 4.25
VA 24.75

Primary	Key	

Foreign	Key	

Foreign Key to
Primary Key
Relationship

DATA SOCIETY © 2017 52

SQL + PYTHON DATA SOCIETY © 2017

•  It’s important to remember that these key’s should be well defined and
structured as physical constraints of a database, but that is not always the case

•  OYen as an analyst you will encounter related tables where these key
relaLonships are broken or not maintained properly

•  Always check the data in related fields to make sure the relaLonship between
2 tables holds and that you are using the correct relaLonship to combine them

102

Inconsistent keys

Cust_ID Name State
1 John VA
2 Ma_ VA
3 Lee CA
4 John MN

[Customers] [States]
State State_Name
CA 2
2 5.54

MN 4.25
Virginia 24.75

Primary	Key	

Foreign	Key	

Foreign Key to
Primary Key
Relationship

SQL + PYTHON DATA SOCIETY © 2017

ALTER TABLE First2
ADD COLUMN Salary

UPDATE First2
SET Salary = 1

The SQL ALTER TABLE statement can also be used to change data types as well as other
modificaLons to the structure of a table such :as:
1.  Adding, dropping, or modifying table columns
2.  Adding, dropping constraints

103

ALTER TABLE statements

[First2]

ID First Name
A1 John
A2 Samantha
A3 Paul

ALTER TABLE First2
ADD CONSTRAINT
PK_1 PRIMARY KEY
(ID)

ID First Name Salary
A1 John 1.00
A2 Samantha 1.00
A3 Paul 1.00

ID First Name
A1 John
A2 Samantha
A3 Paul

ID First Name Salary
A1 John 1.0000
A2 Samantha 1.0000
A3 Paul 1.0000

PK	
ALTER TABLE First2
DROP CONSTRAINT PK_1

PK	

ALTER TABLE First2
ALTER COLUMN
Salary DEC(10,4)

ALTER TABLE First2
DROP COLUMN Salary

DATA SOCIETY © 2017 53

SQL + PYTHON DATA SOCIETY © 2017

•  The illustraLon below demonstrates how the JOIN code relates these tables. In more
complex joins, tables are referred to as LEFT and RIGHT tables based on their order in
the SQL statement, which will impact the records returned in result sets.

104

Joins: code structure

SELECT A.*, B.[Last Name]
FROM [First] A
JOIN [Last] B

 ON A.ID = B.ID

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name
A1 John Smith
A3 Paul Johnson

[First]
(LEFT TABLE)

[Last]
(LEFT TABLE)

Result

Code

Tables &
Results

The LEFT table
follows FROM

The RIGHT table
follows JOIN

A B

SQL + PYTHON DATA SOCIETY © 2017

An INNER JOIN between 2 tables returns the intersecLon between those 2 tables

105

Joins: INNER JOIN

A B

A B

ConnecLon SELECT A.*, B.[Last Name]
FROM [First] A
JOIN [Last] B

 ON A.ID = B.ID

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name
A1 John Smith
A3 Paul Johnson

[First] [Last]

Result

Tables Code Logic
SELECT A.*, B.[Last Name]
FROM [First] A
INNER JOIN [Last] B

 ON A.ID = B.ID

or

DATA SOCIETY © 2017 54

SQL + PYTHON DATA SOCIETY © 2017

A LEFT OUTER JOIN between 2 tables returns all records from the table in the iniLal
table and the intersecLon between those 2 tables. Where there is no intersecLon NULL
values are populated in columns selected from the joined table.

106

Joins: LEFT OUTER JOIN

A B

A B
ConnecLon SELECT A.*, B.[Last Name]

FROM [First] A
LEFT JOIN [Last] B

 ON A.ID = B.ID

Code Logic
SELECT A.*, B.[Last Name]
FROM [First] A
LEFT OUTER JOIN [Last] B

 ON A.ID = B.ID

or

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name
A1 John Smith
A2 Samantha NULL
A3 Paul Johnson

[First] [Last]

Result

Tables

A NULL

SQL + PYTHON DATA SOCIETY © 2017

A LEFT OUTER JOIN with exclusion between 2 tables returns only records from the
original table with no intersecLon to the iniLal table.

107

Joins: LEFT OUTER JOIN (exclude)

A B

ConnecLon SELECT A.*, B.[Last Name]
FROM [First] A
LEFT JOIN [Last] B

 ON A.ID = B.ID
WHERE B.ID IS NULL

Code Logic
SELECT A.*, B.[Last Name]
FROM [First] A
LEFT OUTER JOIN [Last] B

 ON A.ID = B.ID
WHERE B.ID IS NULL
 or

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name
A2 Samantha NULL

[First] [Last]

Result

Tables

A NULL

DATA SOCIETY © 2017 55

SQL + PYTHON DATA SOCIETY © 2017

A RIGHT OUTER JOIN between 2 tables returns all records from the joined table and
the intersecLon between those 2 tables. Where there is no intersecLon NULL values are
populated in columns selected from the table in the iniLal table.

108

Joins: RIGHT OUTER JOIN

A B

A B
ConnecLon SELECT B.ID, A.[First Name]

, B.[Last Name]]
FROM [First] A
RIGHT JOIN [Last] B

 ON A.ID = B.ID

Code Logic
SELECT B.ID, A.[First Name]
, B.[Last Name]
FROM [First] A
RIGHT OUTER JOIN [Last] B

 ON A.ID = B.ID
 or

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name
A1 John Smith
A3 Paul Johnson
A4 NULL Adler

[First] [Last]

Result

Tables

NULL B

SQL + PYTHON DATA SOCIETY © 2017

A RIGHT OUTER JOIN with exclusion between 2 tables returns only records from the
joined table with no intersecLon to the iniLal table.

109

Joins: RIGHT OUTER JOIN (exclude)

A B

ConnecLon SELECT B.ID, A.[First Name]
, B.[Last Name]
FROM [First] A
RIGHT JOIN [Last] B

 ON A.ID = B.ID
WHERE A.ID IS NULL

Code Logic
SELECT B.ID, A.[First Name]
, B.[Last Name]
FROM [First] A
RIGHT OUTER JOIN [Last] B

 ON A.ID = B.ID
WHERE A.ID IS NULL
 or

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name
A4 NULL Adler

[First] [Last]

Result

Tables

NULL B

DATA SOCIETY © 2017 56

SQL + PYTHON DATA SOCIETY © 2017

A FULL OUTER JOIN between 2 tables returns all records from both tables including
their intersecLon.

110

Joins: FULL OUTER JOIN

A B

ConnecLon

Code Logic

SELECT CASE WHEN A.ID IS NULL
 THEN B.ID
 ELSE A.ID
 END as ID

FROM [First] A
FULL OUTER JOIN [Last] B

 ON A.ID = B.ID

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name
A1 John Smith
A2 Samantha NULL
A3 Paul Johnson
A4 NULL Adler

[First] [Last]

Result

Tables

NULL B
A NULL
A B

SQL + PYTHON DATA SOCIETY © 2017

A FULL OUTER JOIN with exclusion between 2 tables returns only records from both
tables excluding their intersecLon.

111

Joins: FULL OUTER JOIN (exclude)

A B

ConnecLon

Code Logic

SELECT CASE WHEN A.ID IS NULL
 THEN B.ID
 ELSE A.ID
 END as ID

, A.[First Name] , B.[Last Name]
FROM [First] A
FULL OUTER JOIN [Last] B

 ON A.ID = B.ID
WHERE A.ID is NULL

 OR B.ID IS NULL

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name
A2 Samantha NULL
A4 NULL Adler

[First] [Last]

Result

Tables

NULL B
A NULL

DATA SOCIETY © 2017 57

SQL + PYTHON DATA SOCIETY © 2017

A CROSS JOIN between 2 tables returns every combinaLon of records from one table
to the other.

112

Joins: CROSS JOIN

B

ConnecLon

Code Logic

SELECT CASE WHEN A.ID IS NULL
 THEN B.ID
 ELSE A.ID

SELECT A.[First Name]
, B.[Last Name]
FROM [First] A
CROSS JOIN [Last] B

First Name Last Name
John	 Smith	
Samantha	 Smith	
Paul	 Smith	
John	 Johnson	
Samantha	 Johnson	
Paul	 Johnson	
John	 Adler	
Samantha	 Adler	
Paul	 Adler	

Result

Tables

ID First Name
A1 John
A2 Samantha
A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

[First] [Last]

A

A1
A2
A3

B1
B2
B3

SQL + PYTHON DATA SOCIETY © 2017

Matching foreign keys in tables
foreign_keys = [
 {
 'tablename':'family_member',
 'fks':[
 {
 'name': 'fk_family',
 'query': """
 ALTER TABLE family_member
 ADD CONSTRAINT fk_family
 FOREIGN KEY (family_id)
 REFERENCES family(id)
 ON DELETE CASCADE
 """
 }
]}
 ,

113

1.  Name of the foreign key
2.  Sets up the query
3.  Specifies which table to alter
4.  IdenLfy the name of the constraint
5.  IdenLfy the column for foreign key
6.  IdenLfy the table (column) to refer to

familydb.py

Tells SQL to delete entries from the
child table if they're deleted from
the parent table

ALTER TABLE family_member
 ADD CONSTRAINT fk_family
 FOREIGN KEY (family_id)
 REFERENCES family(id)
 ON DELETE CASCADE
;

SQL

DATA SOCIETY © 2017 58

SQL + PYTHON DATA SOCIETY © 2017

Matching foreign keys in tables
...Continued from the previous page...
{
 'tablename': 'family_member_interest',
 'fks':[
 {
 'name': 'fk_pi_family_member',
 'query':"""
 ALTER TABLE family_member_interest
 ADD CONSTRAINT fk_pi_family_member
 FOREIGN KEY (family_member_id)
 REFERENCES family_member(id)
 ON DELETE CASCADE
 """
 },

114

1.  Name of the foreign key
2.  Sets up the query
3.  Specifies which table to alter
4.  IdenLfy the name of the constraint
5.  IdenLfy the column for foreign key
6.  IdenLfy the table (column) to refer to

familydb.py

Tells SQL to delete entries from the
child table if they're deleted from
the parent table

SQL + PYTHON DATA SOCIETY © 2017

Matching foreign keys in tables
...Continued from the previous page...
 {
 'name': 'fk_pi_interest',
 'query': """
 ALTER TABLE family_member_interest
 ADD CONSTRAINT fk_pi_interest
 FOREIGN KEY (interest_id)
 REFERENCES interest(id)
 ON DELETE CASCADE
 """
 },

115

1.  Name of the foreign key
2.  Sets up the query
3.  Specifies which table to alter
4.  IdenLfy the name of the constraint
5.  IdenLfy the column for foreign key
6.  IdenLfy the table (column) to refer to

familydb.py

Tells SQL to delete entries from the
child table if they're deleted from
the parent table

DATA SOCIETY © 2017 59

SQL + PYTHON DATA SOCIETY © 2017

Defining func&ons
Use 'def' to create a new function - here, we'll call the function
'fk_exists', and it will have the named arguments 'tbl_name' and
'fk_name', which will be the variables later on in the function.
def fk_exists(tbl_name, fk_name):
 cur.execute("""select * from information_schema.table_constraints
 where table_schema='familydb'
 and table_name='{}'
 and constraint_name = '{}'
 """.format(tbl_name, fk_name))
 return len(cur.fetchall()) > 0

def index_exists(tbl_name, index_name):
 cur.execute("""select * from information_schema.statistics
 where table_schema='familydb'
 and table_name='{}'
 and index_name = '{}'
 """.format(tbl_name, index_name))
 return len(cur.fetchall()) > 0

116

1.  { } creates dicLonaries with key-
value pairs

familydb.py

2.  fetchall returns all the rows for the current
query

SQL + PYTHON DATA SOCIETY © 2017

Dropping foreign constraints
We'll run the functions we defined earlier to drop foreign keys
if they exist.
for tbl in foreign_keys:
 tbl_name = tbl['tablename']
 fks = tbl['fks']

 for fk in fks:
 drop_fk = 'ALTER TABLE {} DROP FOREIGN KEY {}'
 drop_index = 'ALTER TABLE {} DROP INDEX {}'
 key_name = fk['name']

 if fk_exists(tbl_name, key_name):
 cur.execute(drop_fk.format(tbl_name, key_name))

 if index_exists(tbl_name, key_name):
 cur.execute(drop_index.format(tbl_name, key_name))

dbconn.commit()

117

familydb.py

DATA SOCIETY © 2017 60

SQL + PYTHON DATA SOCIETY © 2017

Recrea&ng the tables
for table in tables:
 print('dropping '+table['name'])
 cur.execute('drop table if exists '+table['name'])
dbconn.commit()

for table in tables:
 print('creating '+table['name'])
 cur.execute(table['query'])
dbconn.commit()

for tbl in foreign_keys:
 tbl_name = tbl['tablename']
 fks = tbl['fks']
 for fk in fks:
 cur.execute(fk['query'])

dbconn.commit()

118

familydb.py

SQL + PYTHON DATA SOCIETY © 2017

Loading files into a database
First, create a function to load in the csv files.
def load_file(tablename):
 f = open('data/'+tablename+'.csv', 'r')
 header = f.readline()

 query = """
 insert into {}({})
 values({})
 """

 line = f.readline().strip()
 n = 0
 while line:
 n += 1
 line_parsed = ','.join(["'"+val+"'" for val in line.split(',')])
 cur.execute(query.format(tablename, header, line_parsed))
 line = f.readline().strip()
 print('loaded {} lines to {}'.format(n, tablename))
 return n

119

familydb.py

Open the filepath for the csv file

DATA SOCIETY © 2017 61

SQL + PYTHON DATA SOCIETY © 2017

Loading files into a database
Now, use the function we defined above to load in the file names.
n_families = load_file('family')
n_fam_members = load_file('family_member')
n_interests = load_file('interest')
dbconn.commit()

120

familydb.py

family.csv family_member.csv interest.csv

SQL + PYTHON DATA SOCIETY © 2017

Upda&ng ages
Update the current_age field to calculate their age as of today.
We'll need the DATEDIFF function, and the MySQL internal CURRENT_DATE variable
cur.execute("update family_member
 set current_age = floor(DATEDIFF(CURRENT_DATE, birth_date)/365) ")
dbconn.commit()

121

familydb.py

DATA SOCIETY © 2017 62

SQL + PYTHON DATA SOCIETY © 2017

Crea&ng people's interests
First import numpy and set the seed to make it reproducible
import numpy as np
np.random.seed(100)

Next, set the values. The random.randint function returns a random integer. The
arguments define the parameters.
n_person_interests = n_fam_members*3
rand_person_ids = np.random.randint(1, n_fam_members+1, n_person_interests)
rand_interest_ids = np.random.randint(1, n_interests, n_person_interests)

for i in range(n_person_interests):
 query = """
 insert into family_member_interest(family_member_id, interest_id)
 values({},'{}')
 """.format(rand_person_ids[i], rand_interest_ids[i])
 cur.execute(query)
dbconn.commit()

print('loaded {} lines to family_member_interest'.format(n_person_interests))

122

familydb.py

