
L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

DATA SOCIETY ®

The premiere data science training for professionals

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

1.  The Classifica<on Problem
2.  Odds and the Logis<c Regression Formula<on
3.  Python implementa<on
4.  Assessing model quality
5.  Mul<nomial Logis<c Regression

2

Outline: Logis.c Regression

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

1.  The Classifica<on Problem
2.  Odds and the Logis<c Regression Formula<on
3.  Python implementa<on
4.  Assessing model quality
5.  Mul<nomial Logis<c Regression

3

Outline: Logis.c Regression

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  We have seen linear regression
–  Predicts a con<nuous variable
– As a func<on of other con<nuous or categorical variables

•  Examples:
– Model spending by fans based on number of

 years aOending games, experience ranking,
 income

– Model the height of a plan as a func<on
 of the temperature and rainfall

– Model a pa<ent’s blood pressure as a func<on
 of their age and weight

4

The Classifica.on Problem

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  What if the outcome we care about is not a con<nuous value?
•  Example:
– Which candidate will someone vote for? (A or B)
– Will someone pass or fail a test? (Pass or Fail)
– Will someone default on their credit card payment? (Default or No Default)
– Which of several categories should a book be assigned? (Ctg1, Ctg2, Ctg3, …)

•  This type of problem is called a classifica'on problem
•  Linear regression and Classifica<on form the two most common types of

supervised machine learning problems.
–  Incidentally, the name “logis<c regression” is somewhat of a misnomer, since we are

solving a classifica<on problem, not a regression!

5

The Classifica.on Problem

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  It is difficult to think of a way to use linear regression to solve a classifica<on
problem

•  One thought would be to treat the con<nuous y variable as a probability
•  If probability < 0.5, assume outcome

 won’t happen. If probability ≥ 0.5,
 assume will happen

•  Example:
–  x = 1 à y = 0.4
–  Probability of desired outcome = 0.4
–  Since probability < 0.5, assume desired

 outcome won’t happen when x =2.

6

The Classifica.on Problem

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  So with this plan, any points above 0.5 are assigned to one outcome, and points
below 0.5 are assigned to the other.

•  But with a line, we can obtain values
 larger than 1 and less than 0,
 which does not make sense
 as a probability value

•  We need a func<on that
 automa<cally cuts off at
 0 and 1
–  The logis<c func<on does this.

The Classifica.on Problem

P(z)	=	0.5	

Outcome	
happens	

Outcome	
doesn’t	
happen	

???	

???	

7

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

1.  The Classifica<on Problem
2.  Odds and the Logis<c Regression Formula<on
3.  Python implementa<on
4.  Assessing model quality
5.  Mul<nomial Logis<c Regression

8

Outline: Logis.c Regression

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  We desire a func<on that automa<cally cuts off at 0 and 1.
•  The logis<c func<on has an S-shape which approaches 0 and 1 but never

crosses them:
•  P(y) = logis<c(a)

•  𝑒 is Euler’s number:
 2.718281….
–  (aka the base of the natural log func<on

 and appearing in a wide range of
mathema<cal func<ons)

9

Odds and the Logis.c Regression Formula.on

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑎)= ​1/1+ ​𝑒↑−𝑎  	

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  For 𝑎, we use a linear formula, like our linear regression model:

•  The interpreta<on is: we transform the line into the S-curve via the logis<c

func<on

10

Odds and the Logis.c Regression Formula.on

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑎)= ​1/1+ ​𝑒↑−𝑎  	
𝑎= ​𝛽↓0 + ​𝛽↓1 ​𝑥↓1 + ​𝛽↓2 ​𝑥↓2 	 Note:	these	betas	are	

not	the	OLS	linear	
regression	coefficients	

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

Exercise .me!

11

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  So we have:

•  Where

•  We need a way to es<mate these betas

12

Odds and the Logis.c Regression Formula.on

Note:	these	betas	are	not	the	OLS	linear	
regression	coefficients	

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  We have:

•  If we solve the logis<c equa<on for the linear term, we get the following

13

Odds and the Logis.c Regression Formula.on

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  The right hand side has an intui<ve interpreta<on:

•  Odds = probability of event occurring, divided by probability of event not

occurring

–  Example: probability of winning divided by probability of losing

–  “2 to 1 odds” means twice as likely to win as to lose

14

Odds and the Logis.c Regression Formula.on

This is the odds
of event y

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

Exercise .me!

15

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  We need to find the “best fit” values of the beta’s

•  In linear regression we used the OLS method to find the intercept and

coefficients

•  For logis<c regression, we use a more general method called Maximum

Likelihood Es'ma'on (MLE)

–  “Find the beta’s that are most likely, given our data”

16

Odds and the Logis.c Regression Formula.on

Right-hand-side is called
the “Log odds” or “logit”

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 17

Odds and the Logis.c Regression Formula.on

Right-hand-side is called
the “Log odds” or “logit”

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

1.  The Classifica<on Problem
2.  Odds and the Logis<c Regression Formula<on
3.  Python implementa<on
4.  Assessing model quality
5.  Mul<nomial Logis<c Regression

18

Outline: Logis.c Regression

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 19

Example: Credit Card Default
•  We will try to predict whether or

not someone will default on their

credit card debt.

•  We have their current balance, their

income, and whether or not they

are a student.

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 20

Example: Credit Card Default
•  Make a plot showing the balance

amount and the income.

•  Each dot is colored by whether or

not they defaulted on their next

payment

– Red = defaulted (default = 1)

– Blue = didn’t default (default = 0)

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

Exercise .me!

21

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 22

Logis.c Regression Es.ma.on
from sklearn.linear_model import LogisticRegression
credit_data = pd.read_csv("default.csv")

Make a LR model using the default settings

model = LogisticRegression()

lr_fit = model.fit(X = credit_data[['balance']],

 y = credit_data['default'])

beta0 = lr_fit.intercept_[0] # y intercept
beta1 = lr_fit.coef_[0][0] # coefficient of balance

Script

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 23

Logis.c Regression Es.ma.on
Calculate model predictions
y_pred = lr_fit.predict(credit_data['balance'].values.reshape(-1,1))

Correct classification rate (accuracy):

y_data = credit_data['default']

N = len(credit_data)

sum(y_data == y_pred) / N

Script

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 24

Odds and the Logis.c Regression Formula.on

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

Exercise .me!

25

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

1.  The Classifica<on Problem
2.  Odds and the Logis<c Regression Formula<on
3.  Python implementa<on
4.  Assessing model quality
5.  Mul<nomial Logis<c Regression

26

Outline: Logis.c Regression

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

• We want to measure classifica'on quality / error
• Quality can be measured in terms of correct classifica'on rate:
– Predicted default, and the person did in fact default
– Predicted wouldn’t default, and the person in fact didn’t default

• Error is measured in terms of misclassifica'on rate:
– Predicted default, but they didn’t default
– Predicted they wouldn’t default, but they did default

27

Assessing Model Quality

“True	posi=ve”	

“True	nega=ve”	

“False	posi=ve”	

“False	nega=ve”	

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  The four classifica<on rates can be summarized in what is called a “confusion
matrix:”

•  The diagonal elements give you the rate of correct classifica<on
•  The off-diagonal elements give you the misclassifica<on rate

28

Assessing Model Quality

True	
Posi8ve	

False	
Nega8ve	

False	
Posi8ve	

True	
Nega8ve	

Predic8on	=	1	 Predic8on	=	0	

Actual	=	1	

Actual	=	0	

Accuracy	=		
True	posi=ve	+	True	
nega=ve	

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

Exercise .me!

29

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  Four our model of default vs balance, we have the following rates:

•  We have a very high true nega<ve rate
– We predict no default, and in fact they did not default.
– What concern might you have seeing this?

30

Assessing Model Quality

0.87%	 2.46%	

0.28%	 96.39%	

Predic8on	=	1	 Predic8on	=	0	

Actual	=	1	

Actual	=	0	

Accuracy	=		
	0.87%	+	96.39%	=		
97.26%	

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  Because the vast majority of individuals did not default, what if we simply
had a model that predicted “no” for everyone?

•  The baseline “no default” rate is 96.67%, so we have only improved our
predic<ve power slightly over this dummy model
– Takeaway: be careful to not be misled by high accuracy in a model where the base

rate is very large (or very small)

31

Assessing Model Quality

What if we just guessed "no default" for everyone?

baserate = sum(y_data == 0) / N

Script

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

Exercise .me!

32

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  In a real world semng, we should really be dividing our data set into a test
and training set.

33

Model Valida.on

Why should we use
training and test sets?

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

•  We would like for our model to not just do well on the data that we
currently have, but also on any future data we might receive
•  For example, we have 10,000 credit card customers in our data set for the

current month
•  Next month, we will want to predict their default rate, and we hope our

model will give us an accurate measure.
•  To simulate having unseen data, we ar<ficially remove some data and treat is

as the “test.” The remaining data (“training”) we use to es<mate the model.
Then we see how well the model performs on the test data.
•  Test/ Train also helps us avoid overfiAng

34

Model Valida.on

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 35

Model Valida.on
from sklearn.model_selection import train_test_split
X = credit_data[['balance', 'student']]

y_data = credit_data['default']

X_train, X_test, y_train, y_test = train_test_split(X, y_data,
test_size=0.2, random_state=0)

lr_fit2_train = LogisticRegression().fit(X_train, y_train)

lr_fit2_train.intercept_

lr_fit2_train.coef_

Script

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 36

Model Valida.on
How does it do on training data?
y_pred2_train = lr_fit2_train.predict(X_train)

sum(y_pred2_train == y_train) / len(y_train)

How does it do on test data?

y_pred2_test = lr_fit2_train.predict(X_test)

sum(y_pred2_test == y_test) / len(y_test)

97.01% accuracy
on test data

97.22% accuracy
on training data

Script

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 37

Model Valida.on
How does it do on test data?
y_pred2_test = lr_fit2_train.predict(X_test)

sum(y_pred2_test==y_test)/len(y_test)

Script

97.01% accuracy
on test data

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 38

Adjus.ng the threshold

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 39

Adjus.ng the threshold
•  If we used a smaller value, such as 0.3, more defaults would be predicted.

This would increase true posi<ve and decrease false nega<ves
– But would increase the false posi<ve rate and decrease true nega<ve rate

•  If we used a larger value, such as 0.7, fewer defaults would be predicted.

This would decrease false posi<ves and increase the true nega<ve rate
– But would decrease true posi<ve and increase false nega<ve

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

Exercise .me!

40

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 41

Adjus.ng the threshold
•  We can plot this rela<onship

using what’s called an ROC curve
•  Plot the True Posi<ve Rate vs the

False Posi<ve Rate, using different
cutoff values to determine each
point
•  See the lecture script for how to

calculate the ROC

Cutoff	=	0	leads	to	
perfect	true	posi8ve	
rate	

Cutoff	=	0.5	

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

1.  The Classifica<on Problem
2.  Odds and the Logis<c Regression Formula<on
3.  Python implementa<on
4.  Assessing model quality
5.  Mul<nomial Logis<c Regression

42

Outline: Logis.c Regression

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 43

Classifica.on with Mul.ple Outcomes
•  Up to this point, we have handled outcomes that are “binary”
– Will someone default? Yes or No
– Will someone pass a test? Yes or No
•  The binary logis<c regression can be expanded to model scenarios where

there are mul<ple discrete outcomes.
•  These can be “ordered” or “unordered”
– Ordered example: A survey that asks “How sa<sfied are you with the product (1-5)?”
– Unordered example: Which type of secondary school will someone apply to (

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7

Exercise .me!

44

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 45

Classifica.on with Mul.ple Outcomes
•  Behind the scenes, a mul<nomial logis<c regression create a separate binary

logis<c regression for each of the possible classes
•  For example: with 3 classes we’ll get 3 sets of coefficients. For each x, it finds

the most likely class, among the three sets
•  Fortunately, sklearn does this all under the hood! So our code will look just

like it did for binary logis<c regression
prog_data = pd.read_csv("hsbdemo.csv")
prog_data['female'] = pd.get_dummies(prog_data['gender'])['female’]

Dummy coded ses = socio-economic-status
prog_data = pd.concat([prog_data, pd.get_dummies(prog_data['ses'])],

 axis = 1)

Script

L O G I S T I C R E G R E S S I O N D A T A S O C I E T Y © 2 0 1 7 46

Classifica.on with Mul.ple Outcomes
X = prog_data[['write', 'math', 'high', 'low', 'middle', 'female']]

y = np.ravel(prog_data['prog'])

multinom = LogisticRegression()

multinom_fit = multinom.fit(X, y)

multinom_fit.intercept_

multinom_fit.coef_

y_pred = multinom_fit.predict(X)

sum(y_pred == y) / len(prog_data)

Script

This model only
has 62% accuracy

