
L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

DATA SOCIETY ®

The premiere data science training for professionals

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

“Predic;on is very difficult, especially of the future.”
 -Niels Bohr

2

Forecas(ng

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

1.  Single variable linear regression
2.  Mul;ple linear regression
3.  Model selec;on
4.  Measuring variance and error
5.  Dealing with outliers
6.  Checking for model validity
7.  Interac;ons
8.  Regression with categorical variables

3

Outline: Intro to Regression

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 4

Measuring errors: variance
•  Variance =

•  Variance is denoted by σ2 "sigma"
squared

•  Variance = on average, how widely
actual data is dispersed around [the
predicted values, the mean, etc.]

•  The higher the variance of the residuals
the less accurate the model

(actual data point – expected data point)2

Number of data points

average squared
devia;on from the

mean

=

This can also be the average

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 5

Measuring errors: randomness
"Normal distribu;on" of errors:

•  In a non-biased model errors will be
random

•  If errors are not random it indicates that
there is a "bias" in the model

•  If errors are not random it means you're
not taking something into account

•  Random errors follow a bell curve
–  The bell curve is called a "normal" distribu;on

No error

Skewed
distribu;on

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 6

Measuring errors: standard devia(on
"Normal distribu;on" of errors:

•  Standard devia;on = √variance = σ

•  Standard devia;on is a standardized measure
of how dispersed data points are around the
average or the expected value

•  Standard devia;on tells you what propor;on
of data points falls within a given range

The smaller the standard devia8on of the
residuals the more accurate the model

•  68.2% of errors are within 1σ away
from the average or best fit line

•  95.4% of errors are within 2σ
•  99.6% of errors are within 3σ

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Understanding standard devia;on tells you
the likelihood that a value will be within a given range!

•  A 95% confidence interval is within 2σ away from the average
(or expected value)

•  The objec;ve of a good model: decrease the standard devia;on of the residuals
–  Put another way, to explain as much of the variance as possible

7

Measuring errors: certainty

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  We can check that residuals are normally distributed by plojng them as a
histogram: no bias in our model!

8

Understanding residuals

Pooling the
residuals together

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 9

Plot the residuals
Create a new variable to represent residuals
slr_rev_income_stat_resid = slr_results.resid

Plot the distribution of the residuals
plt.hist(slr_rev_income_stat_resid,
 histtype = 'bar',
 bins = 20,
 ec = 'white',
 color = 'orange',
 zorder = 3)
plt.xlabel('Residuals', fontsize = 24)
plt.ylabel('Frequency', fontsize = 24)
plt.grid(.25, linestyle = 'dashed', zorder = 0)
plt.savefig("lec2_slr_residuals.png", bbox_inches = 'tight')

Script

1.  Specify the number of bins
2.  Make the outline of the bars white
3.  Color the bars orange

4.  X-axis label
5.  Y-axis label

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 10

Plot the residuals

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 11

Calculate the variance of the residuals
var() method produces the variance of the dataset
slr_rev_income_stat_resid.var(ddof = 1) # ddof = degrees of freedom

Let's check manually to see if we understand what Python is doing
slr_resid_avg = slr_rev_income_stat_resid.mean()
slr_resid_avg

Subtract the average of the residuals from each residual
slr_resid_less_avg = slr_rev_income_stat_resid - slr_resid_avg

Square this quantity, take the sum, divide by number of observations - 1
variance_check = ((slr_resid_less_avg**2).sum()) / (len(data) - 1)
variance_check

slr_rev_income_stat_resid.var(ddof = 1)
Out[52]: 75185.41882196997

variance_check
Out[53]: 75185.41882196997

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 12

Standard devia(on of the residuals
The std() method calculates the standard deviation.
slr_rev_income_stat_resid.std()

Take the square root of the variance to make sure you know what Python is
doing. Note that there are many ways to do this.
import math
slr_rev_income_stat_resid.var(ddof = 1)**(1/2)
math.sqrt(slr_rev_income_stat_resid.var(ddof = 1))
np.sqrt(slr_rev_income_stat_resid.var(ddof = 1))

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 13

Exercise (me!

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  σ of total revenue spent: 296
•  σ of income: 51,681

14

Understanding residuals

Pooling the
residuals together

•  σ of residuals: 274

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Compares distribu;ons between two samples of data to determine if there is a
normal distribu;on (standard devia;on)

•  This can be used to evaluate the residuals in our model by comparing the
residuals to the expected normal distribu;on

•  The closer the points follow the line, the more similar the two distribu;ons are

•  Can be used to compare samples from the same data, predicted data vs. real
world data, etc.

15

Quan(le-quan(le plot

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Plots distribu;on of actual data vs. distribu;on of normally distributed data

•  Actual values are plomed on the y-axis and normally distributed values are
plomed on the x-axis

16

Quan(le-quan(le plot

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 17

Quan(le-quan(le plot

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  To make the Q-Q plot easier to read,
we can plot a best fit line through
certain percen;les of the data, say
25th percen;le and 75th percen;le

18

Q-Q plot: best fit line

sm.qqplot(slr_rev_income_stat_resid,
 line = 'q')
plt.title('Q-Q Plot to Test Normality of
 Residuals', fontsize = 24)
plt.xlabel('Theoretical Quantiles',
 fontsize = 18)
plt.ylabel('Sample Quantiles',
 fontsize = 18)
plt.savefig("lec2_slr_qqplot_w_line.png",
 bbox_inches = 'tight')
plt.grid(.25)

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 19

Abnormal Q-Q plots

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  The standard error, or confidence interval of a
regression line, tells you with a certain
percentage certainty where the best fit line can
be

•  Recall that the best fit line is the "average
expected value" of y for a given expected value
of x
–  This value has a standard devia;on as well that

implies the distribu;on of the average expected
value

•  We won't go through the math here, but the
arithme;c here is well understood

20

Standard error of a best fit line
Shaded area represents the
standard errors, also known
as the confidence interval

Explana;on: hmp://stats.stackexchange.com/ques;ons/44838/how-are-the-standard-errors-of-coefficients-calculated-in-a-regression

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 21

Confidence interval of regression model
Plot regression line and 95% confidence intervals with sns.lmplot (from seaborn)
sns.lmplot(x = 'Income',
 y = 'TotRevSpend',
 data = data,
 line_kws = {'color': 'orange',
 'alpha': 5},
 scatter_kws = {'color': 'black',
 'alpha': .15},
 ci = 95)
plt.xlabel('Income ($)', fontsize = 24)
plt.ylabel('Total Revenue Spent ($)', fontsize = 24)

Script

1.  Use linear regression
2.  Make the best fit line orange
3.  Thickness of the best fit line

4.  Thickness of points on scamerplot
5.  Degree of confidence (related to

standard devia;on concept)

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 22

Exercise (me!

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

1.  Single variable linear regression
2.  Mul;ple linear regression
3.  Model selec;on
4.  Measuring variance and error
5.  Dealing with outliers
6.  Checking for model validity
7.  Interac;ons
8.  Regression with categorical variables

23

Outline: Intro to Regression

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Outliers can have a very nega;ve impact on linear regressions if they are not
iden;fied and handled properly:

•  1 data point can completely change the predic;ons of your model

24

Outliers can spoil your regression model

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Scamerplots

•  Box-and-whisker plots

•  Cook's distance

•  Other methods exist and are covered in other courses

25

Iden(fying outliers

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image
may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may
have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may
have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to
delete the image and then insert it again.

•  Box-and-whisker plots in R denote
the median, 25th percen;le and 75th
percen;le with the horizontal lines of
the box

•  The upper whisker is located at the
smaller of the maximum x value and
75th percen;le + 1.5 * IQR

•  The lower whisker is located at the
larger of the smallest x value and
25th percen;le - 1.5 * IQR

•  Outliers are represented by separate
points

26

Box-and-whisker plots

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  IQR = inter-quar;le range

•  IQR = 75th percen;le
 –
 25th percen;le

•  When an outlier is detected, it is

not included in the data set when
calcula;ng the values for the box
limits and the whiskers

27

Box-and-whisker plots: IQR

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image
may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may
have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may
have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to
delete the image and then insert it again.

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 28

Box-and-whisker plots: example

5
4

6

1

9

IQR = 2

= 6 + 1.5 * IQR

= 4 - 1.5 * IQR

Last points
inside range
calculated for
outliers

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 29

Box-and-whisker plots
Identify outliers with box-and-whisker plot.
outlier_data = np.column_stack(([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20],
 [2, 4, 3, 2, 6, 8, 10, 6, 7, 9, 20]))

outlier_df = pd.DataFrame(outlier_data, columns = ['X values', 'Y values'])
bp = plt.boxplot(outlier_data)
plt.xticks([1, 2],['X values', 'Y values'])
plt.title('Data Set 1', fontsize = 24)

plt.savefig("boxplot1.png", bbox_inches = 'tight')

Obtain data from the box plot
outliers = [flier.get_ydata() for flier in bp['fliers']]
outliers

Out[88]: [array([20]), array([20])]

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 30

Box-and-whisker plots
Identify outliers with box-and-whisker plot for second data set.
outlier_data = np.column_stack(([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20],
 [2, 4, 3, 2, 6, 8, 10, 6, 7, 9, 5]))

outlier_df2 = pd.DataFrame(outlier_data2, columns = ['X values', 'Y values'])
bp = plt.boxplot(outlier_data2)
plt.xticks([1, 2],['X values', 'Y values'])
plt.title('Data Set 2', fontsize = 24)

plt.savefig("boxplot2.png", bbox_inches = 'tight')

Obtain data from the box plot
outliers = [flier.get_ydata() for flier in bp2['fliers']]
outliers2

Out[95]: [array([20]), array([], dtype = int32)]

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Measures the effect an observa;on has on a regression model
–  Pi = predic;on from the full regression model for point i
–  Pi2 = predic;on from the regression model for point i if point i is excluded from the data
– V = number of variables in the model
– MSE = mean squared error of the regression model (mean square of the residuals)

•  Cook's distance (CD) for point i:

31

Cook's distance

V * MSE
CDi = (Pi – Pi2)2

Cook’s distance
measures how the

predic;on of a point
changes if that point is

not included in the
original data set.

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 32

Cook's distance
Create a sample data set.
outlier_data = np.column_stack(([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20],
 [2, 4, 3, 2, 6, 8, 10, 6, 7, 9, 20]))

outlier_df = pd.DataFrame(outlier_data, columns = ['X values', 'Y values'])

Reshape data for input into model
X_rs = outlier_df.iloc[:, 0].values.reshape((len(outlier_df), 1))
Y_rs = outlier_df.iloc[:, 1].values.reshape((len(outlier_df), 1))
X = outlier_df.iloc[:, 0]
Y = outlier_df.iloc[:, 1]

Run a linear regression model
lm_outlier_data_stat = ols(formula = 'Y_rs ~ X_rs', data = outlier_df)
lm_outlier_fitted = lm_outlier_data_stat.fit()
influence = lm_outlier_fitted.get_influence()

Outlier_data_CD is the distance and p is the p-value
(outlier_data_CD, p) = influence.cooks_distance

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 33

Cook's distance
A conventional cut-off point for Cook's distance is 4 / number of data points
in the data set, all points where Cook's distance exceeds that value should
be investigated as potential outliers
outlier_data_CD_select = outlier_data_CD[outlier_data_CD > 4 / 11]
outlier_data_CD_select

Visualize Cook’s distance
plt.stem(np.arange(len(outlier_data_CD)),
 outlier_data_CD)
plt.xlabel('Observations', fontsize = 18)
plt.ylabel('Cook Distance', fontsize = 18)

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 34

Cook's distance
print(pd.DataFrame(outlier_data_CD, columns = ['Cook Distance']))

outlier_data_CD_select

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 35

Outliers: NBA fan behavior
Let's see if our total fan revenue model comparing total revenue spent and
fan income level has any outliers.

Let's start with a boxplot.

Matplotlib box plots can only take lists, tuples or numpy arrays
not data frames.
rev_income_arr = np.array(data[['TotRevSpend', 'Income']])
plt.boxplot(rev_income_arr[:, 0:1])
plt.xticks([1], ['Total Revenue Spent']) # No outliers

plt.boxplot(rev_income_arr[:, 1:2]) # No outliers
plt.xticks([1], ['Income'])

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 36

Outliers: NBA fan behavior

0 outliers
according to
the box plot

Row
number of
data point

Cook's
distance for
each point

Note: Boxplots work best when the data is vaguely normally
distributed (bell-curve shaped and symmetric)

outliers_rev
Out[30]: [array([], dtype=int64)]

outliers_income
Out[32]: [array([], dtype=int64)]

 Cook Distance
4 0.007575
50 0.006623
621 0.004109

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 37

Cook's distance: view outliers
Let's try Cook's Distance
Remember our SLR model

slr_results_influence = slr_results.get_influence()

slr_rev_income_CD is the distance and p is the p-value
(slr_rev_income_CD, p) = slr_results_influence.cooks_distance

plt.stem(np.arange(len(slr_rev_income_CD)),
 slr_rev_income_CD)
plt.title('Cook Distance', fontsize = 24)
plt.grid(.25)

slr_rev_income_CD_select =
 slr_rev_income_CD[slr_rev_income_CD >
 4 / len(data)]
data_CD_influencers =
 data[slr_rev_income_CD >
 4 / len(data)]

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 38

Cook's distance: view outliers
There are 3 potential outliers: observations 4, 50, 621
sns.lmplot(x = 'Income',
 y = 'TotRevSpend',
 data = data,
 line_kws = {'color': 'orange'},
 scatter_kws = {'color': 'black', 'alpha': .25})
plt.scatter(data_CD_influencers['Income'],
 data_CD_influencers['TotRevSpend'],
 color = 'red')
plt.xlabel('Income ($)', fontsize = 18)
plt.ylabel('Total Revenue Spent ($)', fontsize = 18)

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 39

Cook's distance: view outliers

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Observa;on 621 seems to s;ck with the general pamern of the data, so let's
keep it.

•  Given incomes of around $35,000, it is out of the ordinary for these fans to
spend $900 on NBA entertainment which range from $0 to about $600.

•  However, it is totally possible that these fans just choose to allocate their
wealth in this way.

40

Cook's distance: remove outliers

Let's remove observations 4 and 50 and see how the analysis is affected.
data_clean = data.drop(data.index[[4, 50]])
y_rev_inc_clean = data_clean['TotRevSpend']
X_rev_inc_clean = data_clean['Income']
slr_rev_income_stat_clean = ols(formula = 'y_rev_inc_clean ~ X_rev_inc_clean',
 data = data_clean)
slr_results_clean = slr_rev_income_stat_clean.fit()
slr_results_clean.summary()

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 41

Cook's distance: remove outliers

Y-intercept
decreased from
251.37 to 246.61

Slope increased
from 0.0021 to
0.0022

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 42

Regression without outliers
Now let's plot the data without the outliers
sns.lmplot(x = 'Income',
 y = 'TotRevSpend',
 data = data_clean,
 line_kws = {'color': 'orange'},
 scatter_kws = {'color': 'black', 'alpha': .25})
plt.scatter(data_CD_influencers['Income'],
 data_CD_influencers['TotRevSpend'],
 color = 'red')
plt.xlabel('Income ($)', fontsize = 18)
plt.ylabel('Total Revenue Spent ($)', fontsize = 18)

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 43

Regression without outliers

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Never remove outliers without understanding why they are present in the data

•  Make sure you understand why removing outliers is the correct course of
ac;on for your analysis!

44

Outliers: watch out!

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 45

Regression without outliers
Let's consider our final model from lecture 1:
DistToArena, GamesWatched, Income, YrsInDatabase
X_final2 = data[['DistToArena', 'GamesWatched', 'Income', 'YrsInDatabase']]
y_final2 = data['TotRevSpend']
mlr_final2_stat = ols(formula = 'y_final2 ~ X_final2', data = data)
mlr_final2_results = mlr_final2_stat.fit()
mlr_final2_results.summary()

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 46

Mul(ple regression: outliers

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 47

Mul(ple regression: outliers
Cook’s Distance
mlr_results_influence = mlr_final2_results.get_influence()

mlr_final2_CD is the distance and p is the p-value
(mlr_final2_CD, p) = mlr_results_influence.cooks_distance
plt.stem(np.arange(len(mlr_final2_CD)), mlr_final2_CD)
plt.title('Cook Distance', fontsize = 24)
plt.grid(.25)

mlr_final2_CD_select = mlr_final2_CD[mlr_final2_CD > 4 / len(data)]
data2_CD_influencers = data[mlr_final2_CD > 4 / len(data)]

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 48

Mul(ple regression: outliers

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  According to Cook's distance and our threshold of 0.004, there are 24 possible
outliers. Let's plot 24 outliers: 4 / 1000 threshold

49

Mul(ple regression: outliers

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  It looks like many of these "outliers" live rela;vely close to the arena, watched
about 30 games, have higher incomes and have been in the database for a
number of years. These just seem like sa;sfied customers!

50

Mul(ple regression: outliers

Let's try to limit the selected outliers to ensure that
we don't exclude any points that may not be outliers. Instead of 4 in the
numerator, we'll double it.
data2_CD_influencers2 = data[mlr_final2_CD > (4 * 2) / len(data)]

View the data identified by Cook's
method as potential outliers.
Select only the rows and columns we're
interested in.
data2_CD_influencers2

Observations 52, 54, 61, 72, 77, 92

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 51

Mul(ple regression: outliers
Get observation numbers of outliers for the 8 / 1000 threshold
outlier_obs = []
for i in range(len(data2_CD_influencers2)):
 outlier_obs.append(data2_CD_influencers2.index[i])
outlier_obs

Create plots for each variable with all the outliers at this new threshold
fig = plt.figure()
ax1 = fig.add_subplot(231)
ax1.stem(outlier_obs, data2_CD_influencers2['TotRevSpend'])
ax1.set_xticks(outlier_obs)
ax1.set_title('Total Revenue Spent')

ax2 = fig.add_subplot(232)
ax2.stem(outlier_obs, data2_CD_influencers2['DistToArena'])
ax2.set_xticks(outlier_obs)
ax2.set_title('Distance to Arena')

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 52

Mul(ple regression: outliers
(continued…)

ax3 = fig.add_subplot(233)
ax3.stem(outlier_obs, data2_CD_influencers2['GamesWatched'])
ax3.set_xticks(outlier_obs)
ax3.set_title('Games Watched')

ax4 = fig.add_subplot(234)
ax4.stem(outlier_obs, data2_CD_influencers2['Income'])
ax4.set_xticks(outlier_obs)
ax4.set_title('Income')

ax5 = fig.add_subplot(235)
ax5.stem(outlier_obs, data2_CD_influencers2['YrsInDatabase'])
ax5.set_xticks(outlier_obs)
ax5.set_title('YrsInDatabase')

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 53

Mul(ple regression: outliers

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 54

Mul(ple regression: outliers
It looks like these 6 observations make more than $100,000 in income, have
mostly spent at least 15 years in the database, and watched about 30 games.
Observation 92 seems to be a newer NBA fan having watched only a few games
but in the games the fan watched he/she spent a lot of money.

If we remove these observations let's see how the regression analysis might change.
data2_clean = data.drop(data.index[outlier_obs])
X_final2_clean = data2_clean[['DistToArena', 'GamesWatched',
 'Income', 'YrsInDatabase']]
y_final2_clean = data2_clean['TotRevSpend']
mlr_final2_stat_clean = ols(formula = 'y_final2_clean ~ X_final2_clean',
 data = data2_clean)

mlr_final2_results_clean = mlr_final2_stat_clean.fit()
mlr_final2_results_clean.summary()

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 55

Mul(ple regression: outliers

Metric	 Original	model	 Model	without	outliers	

Adjusted R^2 0.557 0.571

Intercept 285.4069 283.6414

DistToArena -0.5334 -0.5443

GamesWatched 6.6455 6.7674

Income 0.0011 0.0011

YrsInDatabase 18.3647 19.2615

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

1.  Single variable linear regression
2.  Mul;ple linear regression
3.  Model selec;on
4.  Measuring variance and error
5.  Dealing with outliers
6.  Checking for model validity
7.  Interac;ons
8.  Regression with categorical variables

56

Outline: Intro to Regression

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Variance-infla;on factors (VIFs) are a good test for mul;collinearity
–  Especially helpful for regression with categorical data where ggpairs() and correla;on

measurement may not be meaningful

•  VIF measures how much the variance of a regression coefficient is increased
due to collinearity

•  R2
i = the R2 of the model if a regression model is run with i as the dependent

variable and all other variables in the model as the independent variables

•  Rule of thumb: if VIF > 10, then mul;collinearity is high

57

Tes(ng for mul(collinearity: VIF

1
1 – R2

i
VIFi =

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

R2 = 1 –

1 – R2 =

 so…

58

Tes(ng for mul(collinearity: VIF

1
VIF =

Randomness
Variance

Randomness
Variance

Variance
Randomness

VIFi =

Randomness
Variance

= variance as a mul;ple of its unexplained
 component for the regression model of variable i

The more the rest of the variables in the
model can explain the variance in variable i,
the more the other variables in the model
capture all the effects represented by
variable i!

1
1 – R2

i
VIFi =

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 59

Valida(ng: check for mul(collinearity
We will use the variance_inflation_factor function from statsmodels package
to check for multicollinearity.
from statsmodels.stats.outliers_influence import variance_inflation_factor

Consider a model including all 6 predictor variables
X_all_multicollinearity = [variance_inflation_factor(data.iloc[:,1:].values, j)
 for j in range(data.iloc[:, 1:].shape[1])]
X_all_multicollinearity

While none of the variables have egregious VIFs
there is some in all and VIFs certainly over 5
are worth looking into.

Organize VIFs into a data frame.
data.iloc[:, 1:].corr()

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 60

Valida(ng: check for mul(collinearity
We will use the variance_inflation_factor function from statsmodels package
to check for multicollinearity.
from statsmodels.stats.outliers_influence import variance_inflation_factor

Consider a model including all 6 predictor variables
X_all_multicollinearity = [variance_inflation_factor(data.iloc[:,1:].values, j)
 for j in range(data.iloc[:,1:].shape[1])]
X_all_multicollinearity

Let’s look at the correlations between all the predictors
data.iloc[:, 1:].corr()

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 61

Valida(ng: check for mul(collinearity
 Variables VIF
0 DistToArena 3.465245
1 GamesWatched 5.022505
2 Income 5.296337
3 FanSatisfaction 5.053031
4 YrsInDatabase 4.913695
5  FanComplaints 2.450976

Script

Fairly high VIFs

Correla+on DistToArena GamesWatched Income FanSa+sfac+on YrsInDatabase FanComplaints

DistToArena 1 -0.145751 -0.19673 -0.232739 -0.215945 0.172823

GamesWatched -0.145751 1 0.184111 0.072042 0.196412 -0.03677

Income -0.196725 0.184111 1 0.11846 0.180637 -0.082256

FanSa+sfac+on -0.232739 0.072042 0.11846 1 0.104565 -0.649276

YrsInDatabase -0.215945 0.196412 0.180637 0.104565 1 -0.103144

FanComplaints 0.172823 -0.03677 -0.08226 -0.649276 -0.103144 1

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 62

Valida(ng: check for mul(collinearity
Since FanComplaints and FanSatisfaction are somewhat strongly negatively
correlated, let's run a model without FanSatisfaction and examine its predictive
power.
X_no_FanSatisfaction = data.iloc[:, 1:].drop('FanSatisfaction', axis = 1)
X_no_FanSatisfaction_multicollinearity = [variance_inflation_factor(
 X_no_FanSatisfaction.values, i)
 for i in range(X_no_FanSatisfaction.shape[1])]
X_no_FanSatisfaction_multicollinearity

The VIFs decreased across the board to all below 5.
pd.concat([pd.DataFrame(X_no_FanSatisfaction.columns, columns = ['Variables']),
 pd.DataFrame(X_no_FanSatisfaction_multicollinearity, columns = ['VIF'])],
 axis = 1)
 Variables VIF
0 DistToArena 3.114654
1 GamesWatched 4.665636
2 Income 4.681559
3 YrsInDatabase 4.484057
4 FanComplaints 1.922651

Script

All now lower than 5
but there is s;ll some
mul;collinearity

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 63

Valida(ng: check for mul(collinearity
Let's consider our final model from Lecture 1 which included:
DistToArena, GamesWatched, Income, YrsInDatabase i.e. we’ve removed FanComplaints
X_final2_multicollinearity = [variance_inflation_factor(
 X_final2.values, i)
 for i in range(X_final2.shape[1])]
pd.concat([pd.DataFrame(X_final2.columns, columns = ['Variables']),
 pd.DataFrame(X_final2_multicollinearity, columns = ['VIF'])],
 axis = 1)

 Variables VIF
0 DistToArena 2.725881
1 GamesWatched 4.625936
2 Income 4.663273
3  YrsInDatabase 4.478689

What if we standardize our data?
X_final2_scaled = preprocessing.scale(X_final2)
X_final2_scaled_multicollinearity = [variance_inflation_factor(
 X_final2_scaled, i) for i in range(X_final2_scaled.shape[1])]

Script

All now lower than 5
but there is s;ll some
mul;collinearity

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

Original model

64

Valida(ng: check for mul(collinearity
Standardized and without

FanSa;sfac;on and FanComplaints

Standardizing the data fixed our mul8collinearity issues bringing the VIFs of all
remaining variables in our poten8al model to almost 1!

Variables VIF

DistToArena 1.085791

GamesWatched 1.073145

Income 1.083341

YrsInDatabase 1.096264

Variables VIF

DistToArena 3.465245

GamesWatched 5.022505

Income 5.296337

FanSaQsfacQon 5.053031

YrsInDatabase 4.913695

FanComplaints 2.450976

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Mul;collinearity doesn’t affect the fit of the model

•  Removing mul;collinearity gives us more confidence in the reliability of our
es;mates since the standard errors of our es;mates should decrease

•  Mul;collinearity can cause unexpected changes in the sign and significance of
coefficient es;mates

65

To keep in mind

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 66

Valida(ng: check the residuals
Let’s consider the final model from lecture 1 with standardized data. This model
includes: DistToArena, Income, GamesWatched, YrsInDatabase.

plt.hist(mlr_final_results.resid,
 bins = 20,
 color = 'orange',
 ec = 'white',
 zorder = 3)
plt.xlabel('MLR Final Model Residuals',
 fontsize = 24)
plt.grid(.25,
 linestyle = 'dashed',
 zorder = 0)

Script

1. Specify number of bins desired
2. Color the bins
3. Make outline of each bin white
4. zorder makes the bins on top of the grid lines in the back

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 67

Valida(ng: check the residuals
The residuals seem
normal, let's check
the Q-Q plot!

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 68

Valida(ng: check the residuals
Now let's check the residuals for normality of distribution using the Q-Q plot
sm.qqplot(mlr_final_results.resid, line = 's')
plt.title('Q-Q Plot to Test Normality of Residuals', fontsize = 24)
plt.xlabel('Theoretical Quantiles', fontsize = 18)
plt.ylabel('Sample Quantiles', fontsize = 18)
plt.grid(.25, linestyle = 'dashed')

Script

Looks like our model has slightly heavier
tails than a normal distribu;on. Since the
difference is only slight, these are
probably good enough!

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 69

Valida(ng: check the residuals
Does the variance of the residuals change with the predicted value?
plt.scatter(mlr_final_results.fittedvalues,
 mlr_final_results.resid,
 color = 'black')
plt.plot(mlr_final_results.fittedvalues,
 np.zeros((1000,)), color = 'orange')
plt.xlabel('Fitted Value', fontsize = 18)
plt.ylabel('Residual',
 fontsize = 18)
plt.grid(.25, linestyle = 'dashed')

plt.scatter(mlr_final_results.predict(), mlr_final_results.resid.abs(), color = 'black')
plt.plot(mlr_final_results.predict(), np.zeros((1000,)), color = 'orange')
plt.xlabel('Fitted Value', fontsize = 18)
plt.ylabel('Absolute Value of Residual', fontsize = 18)

Script

There should not be a paIern but there is clearly a triangular shape to the absolute
value of the residuals. This means we're not taking something into account.

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 70

Valida(ng: check the residuals

Looks like the residuals follow
somewhat of a parallelogram pamern,
which means that our model is not
taking something into account.

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  A good explanatory model will have residuals whose variance does not depend
on the independent (predictor) variables

•  If the variance of the residuals is affected by the magnitude of the independent
variables then heteroscedas;city is present
–  This means we have to refine our model further as there is an effect that we're not taking

into account

•  To test for this, run a regression solving for the error terms using the
independent variables in the model

71

Tes(ng for heteroscedas(city

y = mx2 + b + error

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  y = mx2 + b + error

•  error = a + m1x1 + m2x2 + m3x3 + m4x4 … mnxn

•  If there is no heteroscedas;city, then the coefficients m will not be material,
they will all be equal to 0 or close to it

•  error = 0 + 0x1 + 0x2 + 0x3 + 0x4 … 0xn = ~0

72

Tes(ng for heteroscedas(city

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  error = a + m1x1 + m2x2 + m3x3 + m4x4 … mnxn

•  N = number of points in the data set
•  R2 = the R2 of the regression equa;on for the error term

•  Heteroscedas;city (Breusch-Pagan) test:
 H = N*R2

•  H is tested against a X2 distribu;on (chi-squared)
given the degrees of freedom
(number of data points –
number of model parameters)

•  The p-value of the distribu;on tells you if
heteroscedas;city is likely present
(if the regression model for the errors explains them)

73

Tes(ng for heteroscedas(city

Degrees of
freedom

H value

p-value

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 74

Homoscedas(city example
Example with homoscedasticity (no heterscedasticity present)
sample_data = np.column_stack(([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20],
 [2, 4, 3, 2, 6, 8, 10, 7, 6, 9, 20]))
sample_df = pd.DataFrame(sample_data, columns = ['x_data', 'y_data'])
sample_lm = ols('y_data ~ x_data',
 data=sample_df).fit()

plt.scatter(sample_df['x_data'],
 sample_df['y_data'],
 color = 'black')
plt.plot(sample_df['x_data'],
 sample_lm.fittedvalues,
 color = 'orange')

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 75

Homoscedas(city example
Plot residuals vs. fitted values.
plt.scatter(sample_lm.fittedvalues,
 sample_lm.resid,
 color = 'black')
plt.plot(sample_lm.fittedvalues,
 np.zeros((11,)),
 color = 'orange')
plt.xlabel('Fitted Values',
 fontsize = 18)
plt.ylabel('Residual',
 fontsize = 18)
plt.grid(.25,
 linestyle = 'dashed')

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 76

Breusch-Pagan test
You can run the Breusch-Pagan test with het_breuschpagan function in the
statsmodels.stats.api module.
import statsmodels.stats.api as sms
from statsmodels.compat import lzip

Labels for output of test
name = ['Lagrange multiplier statistic', 'p-value’, 'f-value', 'f p-value']
test_sample = sms.het_breuschpagan(sample_lm.resid, sample_lm.model.exog)
lzip(name, test_sample) # pairs each output from test with its meaning

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 77

Breusch-Pagan test
Both p-values are very large for the sample data, which means that the
regression model for the error terms has poor explanatory power, which in
turn means that there is NO heteroscedasticity.
test_mlr = sms.het_breuschpagan(mlr_final_results.resid, mlr_final_results.model.exog)
lzip(name, test_mlr)

While the p-value is not as high as the sample data, it is still above
our 5% significance level. This means that our regression model for the
error terms has some explanatory power, but NOT enough to say that there is
heteroscedasticity present.

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 78

Exercise (me!

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  If you would rather trust the residual plot rather than the Breusch-Pagan test,
there are

•  various ways to deal wth heteroscedas;city, including:

•  Transforma;on of the dependent or independent variables

•  Instead of ordinary least squares, try weighted least squares

•  Add polynomial or interac;on terms

•  Choose a non-linear model

79

Poten(al remedies

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

1.  Single variable linear regression
2.  Mul;ple linear regression
3.  Model selec;on
4.  Measuring variance and error
5.  Dealing with outliers
6.  Checking for model validity
7.  Interac;ons
8.  Regression with categorical variables

80

Outline: Intro to Regression

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Some variables may represent different
things but nonetheless may amplify one
another

•  Example:
–  Smoking and asbestos are different things, both

cause lung cancer, but when combined the risk
of gejng lung cancer mul8plies!

•  To capture this addi;onal risk of both risk
factors being present together, an
interac;on term should be added to the
model

81

Variable interac(ons

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  In the context of our NBA fan behavior analysis:

– Both income and games watched (up to a certain point) increase total revenue spent.

–  It would make intui;ve sense that a fan with more income who watched a lot of games
would further increase the expected total revenue spent!
•  Therefore, we should consider tes;ng the interac;on term of income and games watched!

•  Combining variables can decrease interpretability, but increase predic;ve
accuracy – keep your objec;ves in mind!

82

Variable interac(ons

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 83

Variable interac(ons
data.loc[data['Income'] <= 50000, 'IncomeLevel'] = 1
data.loc[(data['Income'] > 50000) & (data['Income'] <= 125000), 'IncomeLevel'] = 2
data.loc[data['Income'] > 125000, 'IncomeLevel'] = 3

Build interaction model
rev = data['TotRevSpend']
gw = data['GamesWatched']
il = data['IncomeLevel']
rev_il_gw_interaction_lm = ols(
 formula = 'rev ~ gw*il', data = data).fit()

If you want il encoded with dummy variables, use C(il) in the formula.
rev_il_gw_interaction_lm.summary()

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 84

Variable interac(ons
OLS Regression Results

==
Dep. Variable: rev R-squared: 0.229
Model: OLS Adj. R-squared: 0.227
Method: Least Squares F-statistic: 98.76
Date: Fri, 24 Nov 2017 Prob (F-statistic): 5.79e-56
Time: 15:25:23 Log-Likelihood: -6977.6
No. Observations: 1000 AIC: 1.396e+04
Df Residuals: 996 BIC: 1.398e+04
Df Model: 3
Covariance Type: nonrobust
==
 coef std err t P>|t| [0.025 0.975]
--
Intercept 52.4691 58.907 0.891 0.373 -63.127 168.066
gw 8.6731 2.457 3.531 0.000 3.852 13.494
il 93.1757 25.858 3.603 0.000 42.434 143.917
gw:il 0.3719 1.038 0.358 0.720 -1.665 2.408

Console

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 85

Variable interac(ons
To do this in scikit-learn:
Not one hot encoded
poly = preprocessing.PolynomialFeatures(2, interaction_only = True,
 include_bias = False)
il_gw_interaction_sklearn = poly.fit_transform(data[['GamesWatched', 'IncomeLevel']])
rev_il_gw_interaction_lm_sklearn = LinearRegression()
rev_il_gw_interaction_lm_sklearn.fit(il_gw_interaction_sklearn, rev)
rev_il_gw_interaction_fitted =
 rev_il_gw_interaction_lm_sklearn.predict(il_gw_interaction_sklearn)

r2_score(rev, rev_il_gw_interaction_fitted)
22.9%

If a categorical variable has n levels, then a one-hot encoding of that variable will
create n dummy variables.

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 86

Variable interac(ons
To do this in scikit-learn:
One-hot encoding
from sklearn.preprocessing import OneHotEncoder

integer_encoded = data['IncomeLevel'].values.reshape(len(data['Income']), 1)
onehot_encoder = OneHotEncoder(sparse = False)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
poly_onehot = preprocessing.PolynomialFeatures(2, interaction_only = True,
 include_bias = False)
il_gw_interaction_lm_sklearn_onehot =
poly_onehot.fit_transform(data['GamesWatched'].values.reshape(-1, 1), onehot_encoded)
rev_il_gw_interaction_lm_sklearn_onehot = LinearRegression()
rev_il_gw_interaction_lm_sklearn_onehot.fit(il_gw_interaction_lm_sklearn_onehot, rev)
rev_il_gw_interaction_onehot_fitted =
rev_il_gw_interaction_lm_sklearn_onehot.predict(il_gw_interaction_lm_sklearn_onehot)
r2_score(rev, rev_il_gw_interaction_onehot_fitted)

17.2% - Performed worse!
Using this encoding we lose information on the ordering of income levels!

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 87

Variable interac(ons
Let's include interaction terms in our model selection process from lecture 1.
rev_scaled = y_scaled
dist_scaled = X_scaled[:, 0:1]
gw_scaled = X_scaled[:, 1:2]
inc_scaled = X_scaled[:, 2:3]
fs_scaled = X_scaled[:, 3:4]
yid_scaled = X_scaled[:, 4:5]
fc_scaled = X_scaled[:, 5:6]

mlr_interaction = ols(formula = 'rev_scaled ~ dist_scaled + gw_scaled + inc_scaled +
 fs_scaled + yid_scaled + fc_scaled + gw_scaled * il + fs_scaled *
 il',
 data = pd.DataFrame(data_scaled)).fit()
mlr_interaction.summary()

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 88

Variable interac(ons
 OLS Regression Results

==
Dep. Variable: rev_scaled R-squared: 0.568
Model: OLS Adj. R-squared: 0.564
Method: Least Squares F-statistic: 144.6
Date: Fri, 24 Nov 2017 Prob (F-statistic): 1.18e-173

==
 coef std err t P>|t| [0.025 0.975]
--
Intercept 0.3615 0.161 2.245 0.025 0.045 0.678
dist_scaled -0.4169 0.022 -18.723 0.000 -0.461 -0.373
gw_scaled 0.2702 0.073 3.716 0.000 0.128 0.413
inc_scaled 0.2875 0.051 5.690 0.000 0.188 0.387
fs_scaled 0.0929 0.074 1.248 0.212 -0.053 0.239
yid_scaled 0.2735 0.022 12.471 0.000 0.230 0.317
fc_scaled -0.0175 0.028 -0.634 0.526 -0.072 0.037
il -0.1602 0.071 -2.266 0.024 -0.299 -0.021
gw_scaled:il -0.0045 0.031 -0.147 0.883 -0.065 0.056
fs_scaled:il -0.0079 0.030 -0.262 0.793 -0.067 0.051

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 89

Variable interac(ons
To use RFE for model selection we need a LinearRegression object of sklearn
mlr_poly = preprocessing.PolynomialFeatures(2, interaction_only = True,
 include_bias = False)
gw_scaled_il_to_transform = np.column_stack([gw_scaled, data['IncomeLevel'].values])
gw_scaled_il_interaction = mlr_poly.fit_transform(gw_scaled_il_to_transform)

Add the il and interaction column to our already scaled matrix of predictors
X_scaled_interaction = np.column_stack([X_scaled, gw_scaled_il_interaction[:, 1:]])

Drop income column now that we have
mlr_interaction_sklearn = LinearRegression()
mlr_interaction_sklearn.fit(X_scaled_interaction, y_scaled)

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 90

Variable interac(ons
R_squared_comparison = []

for i in range(1, X_scaled_interaction.shape[1] + 1):
 rfe = RFE(mlr_interaction_sklearn, i)
 rfe_fit = rfe.fit(X_scaled_interaction, np.ravel(y_scaled))
 X = X_scaled_interaction[:,np.ravel(np.where(rfe_fit.ranking_ == 1))]
 mlr = LinearRegression()
 mlr.fit(X, y_scaled)
 y_mlr_fitted = mlr.predict(X)
 R_sq = r2_score(y_scaled, y_mlr_fitted)
 R_squared_comparison.append(R_sq)

plt.plot(range(1, X_scaled_interaction.shape[1] + 1),
 R_squared_comparison,
 marker = '.',
 markersize = 10)
plt.title('Model Comparison Using RFE With Interaction', fontsize = 24)
plt.xlabel('Number of Most Important Features', fontsize = 18)
plt.ylabel('R^2', fontsize = 18)
plt.grid(.25, linestyle = 'dashed')

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 91

Variable interac(ons

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Our best model according to RFE even with the possibility of an interac;on
between games watched and income level did not change.

•  Perhaps the rela;onships in the real world are simply non-linear?

92

Variable interac(ons
Do any of the interaction terms show up in our most important features?
Similar to lecture 1, 4 features seems to be the optimal number without too much
model complexity.
rfe_interaction = RFE(mlr_interaction_sklearn, 4)
rfe_interaction_fit = rfe_interaction.fit(X_scaled_interaction, np.ravel(y_scaled))
rfe_interaction_fit.ranking_

Script

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 93

U(lize the model for predic(on
If you decide to use this model and need to make a prediction based on
some input variables, here is how you would do that:
Get your testing data
test = xls.parse('Prediction')
del test['Unnamed: 0']

Standardize test data
new_data = preprocessing.scale(test.iloc[:, 2:])

Select DistToArena, GamesWatched, Income, YrsInDatabase
Delete other variables
X_scaled_for_pred = np.delete(X_scaled, [3, 5], axis = 1)
new_data_for_pred = np.delete(new_data, [3, 5], axis = 1)

First fit the model to the data then predict revenue spent with the new data.
mlr = LinearRegression()
mlr.fit(X_scaled_for_pred, y_scaled)
mlr_prediction = mlr.predict(new_data_for_pred)

Script

These are your predic;ons for the new data!
Remember that these are standardized predic;ons!

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7 94

Exercise (me!

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  Should you build a separate model for each level of fan sa;sfac;on?

•  Should you build a model to understand what drives both the number of games
watched and sa;sfac;on level?

•  Should you build separate models to understand what drives spending behavior
for both casual and die-hard fans?
– Could leverage this informa;on to understand which factors don’t mamer to fans and

don’t affect their behavior?

95

Other models to consider

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

1.  Outliers

2.  Mul;collinearity and correla;on among the variables

3.  Adjusted R squared

4.  Model bias and distribu;on of residuals (Q-Q plot)

5.  Standard devia;on of residuals to assess model fit

6.  Heteroscedas;city / pamern of residuals vs. fimed values

96

Key things to check!

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

•  As much as 40% of trading on the London Stock Exchange is es;mated to be
driven by trading algorithms

97

Predic(on: use cases

•  Ski manufacturers predict demand for skis each winter, stocking up on
supplies

•  Life insurance companies predict the age of death in order to approve policies
and set pricing

•  Energex (Australian u;lity) predicts 20 years of electricity demand growth to
direct infrastructure investment

•  Harrah's Hotel and Casino in Las Vegas predicts how much a customer will
spend over the years, es;ma;ng their life;me value to the casino

Source: Predic;ve Analy;cs by Eric Siegel

L I N E A R R E G R E S S I O N , P T 2 D A T A S O C I E T Y © 2 0 1 7

Metric Purpose
1 Variance Measure of how dispersed the data is

2 Standard deviaQon Standardized measure of how dispersed the data is

3 Q-Q plot / distribuQon of errors Check if there is bias in the data or the model

4 Covariance Measure of linear relaQonship between variables (posiQve / negaQve)

5 CorrelaQon Measure of strength of linear relaQonship between variables (posiQve / negaQve)

6 Slope How a change in variable x will affect variable y

7 R2 % of variaQon in y that can be explained by the variaQon in x

8 Adjusted R2 Modified R2 when there are many independent variables in the model

9 p-values The probability that the paeern exists through random chance

10 VIF Test for mulQcollinearity and independent variable interacQon

11 Breusch-Pagan test Check the residuals for heteroscedasQcity (paeern conQngent on fieed values)

12 AIC Check for informaQon loss when selecQng the right model for your data

98

Recap: what we know so far

