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“Predic;on is very difficult, especially of the future.” 
                                                          -Niels Bohr 
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Forecas(ng 
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1.  Single variable linear regression 
2.  Mul;ple linear regression 
3.  Model selec;on 
4.  Measuring variance and error 
5.  Dealing with outliers 
6.  Checking for model validity 
7.  Interac;ons 
8.  Regression with categorical variables 

3 

Outline: Intro to Regression 
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Measuring errors: variance 
•  Variance = 

•  Variance is denoted by σ2 "sigma" 
squared 

•  Variance = on average, how widely 
actual data is dispersed around [the 
predicted values, the mean, etc.] 

•  The higher the variance of the residuals 
the less accurate the model 

(actual data point – expected data point)2 

Number of data points 

average squared 
devia;on from the 

mean 

= 

This can also be the average 



L I N E A R  R E G R E S S I O N ,  P T  2  D A T A  S O C I E T Y  ©  2 0 1 7  5 

Measuring errors: randomness 
"Normal distribu;on" of errors: 

•  In a non-biased model errors will be 
random 

•  If errors are not random it indicates that 
there is a "bias" in the model 

•  If errors are not random it means you're 
not taking something into account 

•  Random errors follow a bell curve 
–  The bell curve is called a "normal" distribu;on 

No error 

Skewed 
distribu;on 
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Measuring errors: standard devia(on 
"Normal distribu;on" of errors: 

•  Standard devia;on = √variance = σ 

•  Standard devia;on is a standardized measure 
of how dispersed data points are around the 
average or the expected value 

•  Standard devia;on tells you what propor;on 
of data points falls within a given range 

The smaller the standard devia8on of the 
residuals the more accurate the model 

•  68.2% of errors are within 1σ away 
from the average or best fit line 

•  95.4% of errors are within 2σ 
•  99.6% of errors are within 3σ 
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•  Understanding standard devia;on tells you                                                                  
the likelihood that a value will be within a given range! 

•  A 95% confidence interval is within 2σ away from the average                                      
(or expected value) 

•  The objec;ve of a good model: decrease the standard devia;on of the residuals 
–  Put another way, to explain as much of the variance as possible 
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Measuring errors: certainty 
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•  We can check that residuals are normally distributed by plojng them as a 
histogram: no bias in our model! 
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Understanding residuals 

Pooling the 
residuals together 
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Plot the residuals 
# Create a new variable to represent residuals 
slr_rev_income_stat_resid = slr_results.resid 
 
# Plot the distribution of the residuals 
plt.hist(slr_rev_income_stat_resid,  
         histtype = 'bar',  
         bins = 20,  
         ec = 'white',  
         color = 'orange',  
         zorder = 3) 
plt.xlabel('Residuals', fontsize = 24) 
plt.ylabel('Frequency', fontsize = 24) 
plt.grid(.25, linestyle = 'dashed', zorder = 0) 
plt.savefig("lec2_slr_residuals.png", bbox_inches = 'tight') 
 

Script 

1.  Specify the number of bins 
2.  Make the outline of the bars white 
3.  Color the bars orange 
 
4.  X-axis label 
5.  Y-axis label 
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Plot the residuals 
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Calculate the variance of the residuals 
# var() method produces the variance of the dataset 
slr_rev_income_stat_resid.var(ddof = 1) # ddof = degrees of freedom 
 
# Let's check manually to see if we understand what Python is doing 
slr_resid_avg = slr_rev_income_stat_resid.mean() 
slr_resid_avg 
 
# Subtract the average of the residuals from each residual 
slr_resid_less_avg = slr_rev_income_stat_resid - slr_resid_avg 
 
# Square this quantity, take the sum, divide by number of observations - 1 
variance_check = ((slr_resid_less_avg**2).sum()) / (len(data) - 1) 
variance_check 
 
slr_rev_income_stat_resid.var(ddof = 1) 
# Out[52]: 75185.41882196997 
 
variance_check 
# Out[53]: 75185.41882196997 
 

Script 
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Standard devia(on of the residuals 
# The std() method calculates the standard deviation. 
slr_rev_income_stat_resid.std() 
 
# Take the square root of the variance to make sure you know what Python is 
# doing. Note that there are many ways to do this. 
import math 
slr_rev_income_stat_resid.var(ddof = 1)**(1/2) 
math.sqrt(slr_rev_income_stat_resid.var(ddof = 1)) 
np.sqrt(slr_rev_income_stat_resid.var(ddof = 1)) 

Script 
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Exercise (me! 
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•  σ of total revenue spent: 296 
•  σ of income: 51,681 
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Understanding residuals 

Pooling the 
residuals together 

•  σ of residuals: 274 
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•  Compares distribu;ons between two samples of data to determine if there is a 
normal distribu;on (standard devia;on) 

•  This can be used to evaluate the residuals in our model by comparing the 
residuals to the expected normal distribu;on 

•  The closer the points follow the line, the more similar the two distribu;ons are 

•  Can be used to compare samples from the same data, predicted data vs. real 
world data, etc. 
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Quan(le-quan(le plot 
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•  Plots distribu;on of actual data vs. distribu;on of normally distributed data 

•  Actual values are plomed on the y-axis and normally distributed values are 
plomed on the x-axis 

16 

Quan(le-quan(le plot 
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Quan(le-quan(le plot 
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•  To make the Q-Q plot easier to read, 
we can plot a best fit line through 
certain percen;les of the data, say 
25th percen;le and 75th percen;le 

18 

Q-Q plot: best fit line 

sm.qqplot(slr_rev_income_stat_resid,  
          line = 'q') 
plt.title('Q-Q Plot to Test Normality of   
          Residuals', fontsize = 24) 
plt.xlabel('Theoretical Quantiles',  
           fontsize = 18) 
plt.ylabel('Sample Quantiles',  
           fontsize = 18) 
plt.savefig("lec2_slr_qqplot_w_line.png",  
            bbox_inches = 'tight') 
plt.grid(.25) 

Script 
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Abnormal Q-Q plots 
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•  The standard error, or confidence interval of a 
regression line, tells you with a certain 
percentage certainty where the best fit line can 
be 

•  Recall that the best fit line is the "average 
expected value" of y for a given expected value 
of x 
–  This value has a standard devia;on as well that 

implies the distribu;on of the average expected 
value 

•  We won't go through the math here, but the 
arithme;c here is well understood 
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Standard error of a best fit line 
Shaded area represents the 
standard errors, also known 
as the confidence interval 

Explana;on: hmp://stats.stackexchange.com/ques;ons/44838/how-are-the-standard-errors-of-coefficients-calculated-in-a-regression  
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Confidence interval of regression model 
# Plot regression line and 95% confidence intervals with sns.lmplot (from seaborn) 
sns.lmplot(x = 'Income',  
           y = 'TotRevSpend',  
           data = data,  
           line_kws = {'color': 'orange',  
                       'alpha': 5},  
           scatter_kws = {'color': 'black',  
                          'alpha': .15},  
           ci = 95) 
plt.xlabel('Income ($)', fontsize = 24) 
plt.ylabel('Total Revenue Spent ($)', fontsize = 24) 

Script 

1.  Use linear regression 
2.  Make the best fit line orange 
3.  Thickness of the best fit line 
 
4.  Thickness of points on scamerplot 
5.  Degree of confidence (related to 

standard devia;on concept) 
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Exercise (me! 
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1.  Single variable linear regression 
2.  Mul;ple linear regression 
3.  Model selec;on 
4.  Measuring variance and error 
5.  Dealing with outliers 
6.  Checking for model validity 
7.  Interac;ons 
8.  Regression with categorical variables 
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Outline: Intro to Regression 
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•  Outliers can have a very nega;ve impact on linear regressions if they are not 
iden;fied and handled properly: 

•  1 data point can completely change the predic;ons of your model 

24 

Outliers can spoil your regression model 



L I N E A R  R E G R E S S I O N ,  P T  2  D A T A  S O C I E T Y  ©  2 0 1 7  

•  Scamerplots 

•  Box-and-whisker plots 

•  Cook's distance 
 
•  Other methods exist and are covered in other courses 

25 

Iden(fying outliers 
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image 
may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may 
have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may 
have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to 
delete the image and then insert it again.

•  Box-and-whisker plots in R denote 
the median, 25th percen;le and 75th 
percen;le with the horizontal lines of 
the box 

•  The upper whisker is located at the 
smaller of the maximum x value and 
75th percen;le + 1.5 * IQR  

•  The lower whisker is located at the 
larger of the smallest x value and 
25th percen;le - 1.5 * IQR 

•  Outliers are represented by separate 
points 

26 

Box-and-whisker plots 
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•  IQR = inter-quar;le range 

•  IQR = 75th percen;le 
                       – 
             25th percen;le   
 
•  When an outlier is detected, it is 

not included in the data set when 
calcula;ng the values for the box 
limits and the whiskers 
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Box-and-whisker plots: IQR 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image 
may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may 
have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may 
have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to 
delete the image and then insert it again.
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Box-and-whisker plots: example 

5 
4 

6 

1 

9 

IQR = 2 

= 6 + 1.5 * IQR  

= 4 - 1.5 * IQR  

Last points 
inside range 
calculated for 
outliers 
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Box-and-whisker plots 
# Identify outliers with box-and-whisker plot. 
outlier_data = np.column_stack(([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20], 
                                [2, 4, 3, 2, 6, 8, 10, 6, 7, 9, 20])) 
 
outlier_df = pd.DataFrame(outlier_data, columns = ['X values', 'Y values']) 
bp = plt.boxplot(outlier_data)  
plt.xticks([1, 2],['X values', 'Y values']) 
plt.title('Data Set 1', fontsize = 24) 
 
plt.savefig("boxplot1.png", bbox_inches = 'tight') 
 
# Obtain data from the box plot 
outliers = [flier.get_ydata() for flier in bp['fliers']] 
outliers 
 
# Out[88]: [array([20]), array([20])] 

Script 
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Box-and-whisker plots 
# Identify outliers with box-and-whisker plot for second data set. 
outlier_data = np.column_stack(([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20], 
                                [2, 4, 3, 2, 6, 8, 10, 6, 7, 9, 5])) 
 
outlier_df2 = pd.DataFrame(outlier_data2, columns = ['X values', 'Y values']) 
bp = plt.boxplot(outlier_data2)  
plt.xticks([1, 2],['X values', 'Y values']) 
plt.title('Data Set 2', fontsize = 24) 
 
plt.savefig("boxplot2.png", bbox_inches = 'tight') 
 
# Obtain data from the box plot 
outliers = [flier.get_ydata() for flier in bp2['fliers']] 
outliers2 
 
# Out[95]: [array([20]), array([], dtype = int32)] 

Script 
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•  Measures the effect an observa;on has on a regression model 
–  Pi = predic;on from the full regression model for point i 
–  Pi2 = predic;on from the regression model for point i if point i is excluded from the data 
– V = number of variables in the model  
– MSE = mean squared error of the regression model (mean square of the residuals) 

•  Cook's distance (CD) for point i: 

31 

Cook's distance 

V * MSE 
CDi = (Pi – Pi2)2 

Cook’s distance 
measures how the 

predic;on of a point 
changes if that point is 

not included in the 
original data set. 
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Cook's distance 
# Create a sample data set.  
outlier_data = np.column_stack(([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20], 
                                [2, 4, 3, 2, 6, 8, 10, 6, 7, 9, 20])) 
 
outlier_df = pd.DataFrame(outlier_data, columns = ['X values', 'Y values']) 
 
# Reshape data for input into model 
X_rs = outlier_df.iloc[:, 0].values.reshape((len(outlier_df), 1)) 
Y_rs = outlier_df.iloc[:, 1].values.reshape((len(outlier_df), 1)) 
X = outlier_df.iloc[:, 0] 
Y = outlier_df.iloc[:, 1] 
 
# Run a linear regression model 
lm_outlier_data_stat = ols(formula = 'Y_rs ~ X_rs', data = outlier_df) 
lm_outlier_fitted = lm_outlier_data_stat.fit() 
influence = lm_outlier_fitted.get_influence() 
 
# Outlier_data_CD is the distance and p is the p-value 
(outlier_data_CD, p) = influence.cooks_distance 

Script 
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Cook's distance 
# A conventional cut-off point for Cook's distance is 4 / number of data points 
# in the data set, all points where Cook's distance exceeds that value should 
# be investigated as potential outliers 
outlier_data_CD_select = outlier_data_CD[outlier_data_CD > 4 / 11] 
outlier_data_CD_select 
 
# Visualize Cook’s distance 
plt.stem(np.arange(len(outlier_data_CD)),  
         outlier_data_CD) 
plt.xlabel('Observations', fontsize = 18) 
plt.ylabel('Cook Distance', fontsize = 18) 
 
 

Script 
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Cook's distance 
print(pd.DataFrame(outlier_data_CD, columns = ['Cook Distance'])) 
 
outlier_data_CD_select 

Script 
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Outliers: NBA fan behavior 
# Let's see if our total fan revenue model comparing total revenue spent and 
# fan income level has any outliers.  
 
# Let's start with a boxplot.  
 
# Matplotlib box plots can only take lists, tuples or numpy arrays 
# not data frames. 
rev_income_arr = np.array(data[['TotRevSpend', 'Income']]) 
plt.boxplot(rev_income_arr[:, 0:1]) 
plt.xticks([1], ['Total Revenue Spent']) # No outliers 
 
plt.boxplot(rev_income_arr[:, 1:2]) # No outliers 
plt.xticks([1], ['Income']) 

Script 
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Outliers: NBA fan behavior 

0 outliers 
according to 
the box plot 

Row 
number of 
data point 

Cook's 
distance for 
each point 

Note: Boxplots work best when the data is vaguely normally 
distributed (bell-curve shaped and symmetric) 

outliers_rev 
Out[30]: [array([], dtype=int64)] 

outliers_income 
Out[32]: [array([], dtype=int64)] 

 Cook Distance 
4           0.007575 
50         0.006623 
621       0.004109 



L I N E A R  R E G R E S S I O N ,  P T  2  D A T A  S O C I E T Y  ©  2 0 1 7  37 

Cook's distance: view outliers 
# Let's try Cook's Distance 
# Remember our SLR model 
 
slr_results_influence = slr_results.get_influence() 
 
# slr_rev_income_CD is the distance and p is the p-value 
(slr_rev_income_CD, p) = slr_results_influence.cooks_distance 
 
plt.stem(np.arange(len(slr_rev_income_CD)),  
         slr_rev_income_CD) 
plt.title('Cook Distance', fontsize = 24) 
plt.grid(.25) 
 
slr_rev_income_CD_select =  
           slr_rev_income_CD[slr_rev_income_CD >  
           4 / len(data)] 
data_CD_influencers =  
           data[slr_rev_income_CD >  
           4 / len(data)] 

Script 
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Cook's distance: view outliers 
# There are 3 potential outliers: observations 4, 50, 621     
sns.lmplot(x = 'Income',  
           y = 'TotRevSpend',  
           data = data,  
           line_kws = {'color': 'orange'},  
           scatter_kws = {'color': 'black', 'alpha': .25}) 
plt.scatter(data_CD_influencers['Income'],  
            data_CD_influencers['TotRevSpend'],  
            color = 'red') 
plt.xlabel('Income ($)', fontsize = 18) 
plt.ylabel('Total Revenue Spent ($)', fontsize = 18)  

Script 
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Cook's distance: view outliers 
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•  Observa;on 621 seems to s;ck with the general pamern of the data, so let's 
keep it.  

•  Given incomes of around $35,000, it is out of the ordinary for these fans to 
spend $900 on NBA entertainment which range from $0 to about $600.  

•  However, it is totally possible that these fans just choose to allocate their 
wealth in this way.  

40 

Cook's distance: remove outliers 

# Let's remove observations 4 and 50 and see how the analysis is affected.  
data_clean = data.drop(data.index[[4, 50]]) 
y_rev_inc_clean = data_clean['TotRevSpend'] 
X_rev_inc_clean = data_clean['Income'] 
slr_rev_income_stat_clean = ols(formula = 'y_rev_inc_clean ~ X_rev_inc_clean',  
                                data = data_clean) 
slr_results_clean = slr_rev_income_stat_clean.fit() 
slr_results_clean.summary()  

Script 
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Cook's distance: remove outliers 

Y-intercept 
decreased from 
251.37 to 246.61 

Slope increased 
from 0.0021 to 
0.0022 
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Regression without outliers 
# Now let's plot the data without the outliers 
sns.lmplot(x = 'Income',  
           y = 'TotRevSpend',  
           data = data_clean,  
           line_kws = {'color': 'orange'},  
           scatter_kws = {'color': 'black', 'alpha': .25}) 
plt.scatter(data_CD_influencers['Income'],  
            data_CD_influencers['TotRevSpend'],  
            color = 'red') 
plt.xlabel('Income ($)', fontsize = 18) 
plt.ylabel('Total Revenue Spent ($)', fontsize = 18)  

Script 
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Regression without outliers 



L I N E A R  R E G R E S S I O N ,  P T  2  D A T A  S O C I E T Y  ©  2 0 1 7  

•  Never remove outliers without understanding why they are present in the data  

•  Make sure you understand why removing outliers is the correct course of 
ac;on for your analysis! 

44 

Outliers: watch out! 
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Regression without outliers 
# Let's consider our final model from lecture 1: 
# DistToArena, GamesWatched, Income, YrsInDatabase 
X_final2 = data[['DistToArena', 'GamesWatched', 'Income', 'YrsInDatabase']] 
y_final2 = data['TotRevSpend'] 
mlr_final2_stat = ols(formula = 'y_final2 ~ X_final2', data = data) 
mlr_final2_results = mlr_final2_stat.fit() 
mlr_final2_results.summary() 

Script 
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Mul(ple regression: outliers 
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Mul(ple regression: outliers 
# Cook’s Distance 
mlr_results_influence = mlr_final2_results.get_influence() 
 
# mlr_final2_CD is the distance and p is the p-value 
(mlr_final2_CD, p) = mlr_results_influence.cooks_distance 
plt.stem(np.arange(len(mlr_final2_CD)), mlr_final2_CD) 
plt.title('Cook Distance', fontsize = 24) 
plt.grid(.25) 
 
mlr_final2_CD_select = mlr_final2_CD[mlr_final2_CD > 4 / len(data)] 
data2_CD_influencers = data[mlr_final2_CD > 4 / len(data)] 
 

Script 
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Mul(ple regression: outliers 
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•  According to Cook's distance and our threshold of 0.004, there are 24 possible 
outliers. Let's plot 24 outliers: 4 / 1000 threshold 

49 

Mul(ple regression: outliers 
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•  It looks like many of these "outliers" live rela;vely close to the arena, watched 
about 30 games, have higher incomes and have been in the database for a 
number of years. These just seem like sa;sfied customers! 
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Mul(ple regression: outliers 

# Let's try to limit the selected outliers to ensure that 
# we don't exclude any points that may not be outliers. Instead of 4 in the 
# numerator, we'll double it.  
data2_CD_influencers2 = data[mlr_final2_CD > (4 * 2) / len(data)] 
 
# View the data identified by Cook's  
# method as potential outliers.  
# Select only the rows and columns we're  
# interested in.  
data2_CD_influencers2  
 
# Observations 52, 54, 61, 72, 77, 92 

Script 



L I N E A R  R E G R E S S I O N ,  P T  2  D A T A  S O C I E T Y  ©  2 0 1 7  51 

Mul(ple regression: outliers 
# Get observation numbers of outliers for the 8 / 1000 threshold 
outlier_obs = [] 
for i in range(len(data2_CD_influencers2)): 
    outlier_obs.append(data2_CD_influencers2.index[i]) 
outlier_obs     
 
# Create plots for each variable with all the outliers at this new threshold 
fig = plt.figure() 
ax1 = fig.add_subplot(231) 
ax1.stem(outlier_obs, data2_CD_influencers2['TotRevSpend']) 
ax1.set_xticks(outlier_obs) 
ax1.set_title('Total Revenue Spent') 
 
ax2 = fig.add_subplot(232) 
ax2.stem(outlier_obs, data2_CD_influencers2['DistToArena']) 
ax2.set_xticks(outlier_obs) 
ax2.set_title('Distance to Arena') 

Script 
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Mul(ple regression: outliers 
(continued…) 
 
ax3 = fig.add_subplot(233) 
ax3.stem(outlier_obs, data2_CD_influencers2['GamesWatched']) 
ax3.set_xticks(outlier_obs) 
ax3.set_title('Games Watched') 
 
ax4 = fig.add_subplot(234) 
ax4.stem(outlier_obs, data2_CD_influencers2['Income']) 
ax4.set_xticks(outlier_obs) 
ax4.set_title('Income') 
 
ax5 = fig.add_subplot(235) 
ax5.stem(outlier_obs, data2_CD_influencers2['YrsInDatabase']) 
ax5.set_xticks(outlier_obs) 
ax5.set_title('YrsInDatabase') 
 

Script 
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Mul(ple regression: outliers 
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Mul(ple regression: outliers 
# It looks like these 6 observations make more than $100,000 in income, have 
# mostly spent at least 15 years in the database, and watched about 30 games. 
# Observation 92 seems to be a newer NBA fan having watched only a few games 
# but in the games the fan watched he/she spent a lot of money.   
 
# If we remove these observations let's see how the regression analysis might change.  
data2_clean = data.drop(data.index[outlier_obs]) 
X_final2_clean = data2_clean[['DistToArena', 'GamesWatched',  
                              'Income', 'YrsInDatabase']] 
y_final2_clean = data2_clean['TotRevSpend'] 
mlr_final2_stat_clean = ols(formula = 'y_final2_clean ~ X_final2_clean', 
                            data = data2_clean) 
 
mlr_final2_results_clean = mlr_final2_stat_clean.fit() 
mlr_final2_results_clean.summary() 
 
 

Script 
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Mul(ple regression: outliers 

Metric	 Original	model	 Model	without	outliers	

Adjusted R^2 0.557 0.571 

Intercept 285.4069 283.6414 

DistToArena -0.5334 -0.5443  

GamesWatched 6.6455 6.7674 

Income 0.0011 0.0011 

YrsInDatabase 18.3647 19.2615 
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1.  Single variable linear regression 
2.  Mul;ple linear regression 
3.  Model selec;on 
4.  Measuring variance and error 
5.  Dealing with outliers 
6.  Checking for model validity 
7.  Interac;ons 
8.  Regression with categorical variables 
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Outline: Intro to Regression 
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•  Variance-infla;on factors (VIFs) are a good test for mul;collinearity 
–  Especially helpful for regression with categorical data where ggpairs() and correla;on 

measurement may not be meaningful 

•  VIF measures how much the variance of a regression coefficient is increased 
due to collinearity 

•  R2
i = the R2 of the model if a regression model is run with i as the dependent 

variable and all other variables in the model as the independent variables 

•  Rule of thumb: if VIF > 10, then mul;collinearity is high 
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Tes(ng for mul(collinearity: VIF 

1 
1 – R2

i 
VIFi  =  
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R2 = 1 –  

1 – R2 = 

                 so… 
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Tes(ng for mul(collinearity: VIF 

1 
VIF =  

Randomness 
Variance 

Randomness 
Variance 

Variance 
Randomness 

VIFi  =  

Randomness 
Variance 

=  variance as a mul;ple of its unexplained    
    component for the regression model of variable i 

The more the rest of the variables in the 
model can explain the variance in variable i, 
the more the other variables in the model 
capture all the effects represented by 
variable i!  

1 
1 – R2

i 
VIFi  =  
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Valida(ng: check for mul(collinearity 
# We will use the variance_inflation_factor function from statsmodels package 
# to check for multicollinearity. 
from statsmodels.stats.outliers_influence import variance_inflation_factor 
 
# Consider a model including all 6 predictor variables 
X_all_multicollinearity = [variance_inflation_factor(data.iloc[:,1:].values, j)  
    for j in range(data.iloc[:, 1:].shape[1])] 
X_all_multicollinearity 
 
# While none of the variables have egregious VIFs  
# there is some in all and VIFs certainly over 5  
# are worth looking into. 
 
# Organize VIFs into a data frame. 
data.iloc[:, 1:].corr() 

Script 
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Valida(ng: check for mul(collinearity 
# We will use the variance_inflation_factor function from statsmodels package 
# to check for multicollinearity. 
from statsmodels.stats.outliers_influence import variance_inflation_factor 
 
# Consider a model including all 6 predictor variables 
X_all_multicollinearity = [variance_inflation_factor(data.iloc[:,1:].values, j)  
    for j in range(data.iloc[:,1:].shape[1])] 
X_all_multicollinearity 
 
# Let’s look at the correlations between all the predictors 
data.iloc[:, 1:].corr() 

Script 
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Valida(ng: check for mul(collinearity 
 Variables       VIF 
0      DistToArena  3.465245 
1     GamesWatched  5.022505 
2           Income  5.296337 
3  FanSatisfaction  5.053031 
4    YrsInDatabase  4.913695 
5  FanComplaints    2.450976 

Script 

Fairly high VIFs 

Correla+on DistToArena GamesWatched Income FanSa+sfac+on YrsInDatabase FanComplaints 

DistToArena 1 -0.145751 -0.19673 -0.232739 -0.215945 0.172823 

GamesWatched -0.145751 1 0.184111 0.072042 0.196412 -0.03677 

Income -0.196725 0.184111 1 0.11846 0.180637 -0.082256 

FanSa+sfac+on -0.232739 0.072042 0.11846 1 0.104565 -0.649276 

YrsInDatabase -0.215945 0.196412 0.180637 0.104565 1 -0.103144 

FanComplaints 0.172823 -0.03677 -0.08226 -0.649276 -0.103144 1 



L I N E A R  R E G R E S S I O N ,  P T  2  D A T A  S O C I E T Y  ©  2 0 1 7  62 

Valida(ng: check for mul(collinearity 
# Since FanComplaints and FanSatisfaction are somewhat strongly negatively  
# correlated, let's run a model without FanSatisfaction and examine its predictive  
# power. 
X_no_FanSatisfaction = data.iloc[:, 1:].drop('FanSatisfaction', axis = 1) 
X_no_FanSatisfaction_multicollinearity = [variance_inflation_factor( 
        X_no_FanSatisfaction.values, i) 
        for i in range(X_no_FanSatisfaction.shape[1])]  
X_no_FanSatisfaction_multicollinearity 
 
# The VIFs decreased across the board to all below 5.  
pd.concat([pd.DataFrame(X_no_FanSatisfaction.columns, columns = ['Variables']), 
           pd.DataFrame(X_no_FanSatisfaction_multicollinearity, columns = ['VIF'])], 
           axis = 1) 
 Variables       VIF 
0    DistToArena  3.114654 
1   GamesWatched  4.665636 
2         Income  4.681559 
3  YrsInDatabase  4.484057 
4  FanComplaints  1.922651 

Script 

All now lower than 5 
but there is s;ll some 
mul;collinearity 
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Valida(ng: check for mul(collinearity 
# Let's consider our final model from Lecture 1 which included: 
# DistToArena, GamesWatched, Income, YrsInDatabase i.e. we’ve removed FanComplaints 
X_final2_multicollinearity = [variance_inflation_factor( 
                                X_final2.values, i)  
                                for i in range(X_final2.shape[1])] 
pd.concat([pd.DataFrame(X_final2.columns, columns = ['Variables']),  
           pd.DataFrame(X_final2_multicollinearity, columns = ['VIF'])], 
           axis = 1) 
 
 Variables       VIF 
0    DistToArena  2.725881 
1   GamesWatched  4.625936 
2         Income  4.663273 
3  YrsInDatabase  4.478689 
 
# What if we standardize our data? 
X_final2_scaled = preprocessing.scale(X_final2) 
X_final2_scaled_multicollinearity = [variance_inflation_factor( 
        X_final2_scaled, i) for i in range(X_final2_scaled.shape[1])] 
 
 

Script 

All now lower than 5 
but there is s;ll some 
mul;collinearity 
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Original model 

64 

Valida(ng: check for mul(collinearity 
Standardized and without 

FanSa;sfac;on and FanComplaints 

Standardizing the data fixed our mul8collinearity issues bringing the VIFs of all 
remaining variables in our poten8al model to almost 1! 

Variables VIF 

DistToArena 1.085791 

GamesWatched 1.073145 

Income 1.083341 

YrsInDatabase 1.096264 

Variables VIF 

DistToArena 3.465245 

GamesWatched 5.022505 

Income 5.296337 

FanSaQsfacQon 5.053031 

YrsInDatabase 4.913695 

FanComplaints 2.450976 
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•  Mul;collinearity doesn’t affect the fit of the model 

•  Removing mul;collinearity gives us more confidence in the reliability of our 
es;mates since the standard errors of our es;mates should decrease 

•  Mul;collinearity can cause unexpected changes in the sign and significance of 
coefficient es;mates 
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To keep in mind 
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Valida(ng: check the residuals 
# Let’s consider the final model from lecture 1 with standardized data. This model  
# includes: DistToArena, Income, GamesWatched, YrsInDatabase.  
 
plt.hist(mlr_final_results.resid,  
         bins = 20,  
         color = 'orange',  
         ec = 'white', 
         zorder = 3) 
plt.xlabel('MLR Final Model Residuals',  
           fontsize = 24) 
plt.grid(.25,  
         linestyle = 'dashed',  
         zorder = 0) 
 

Script 

1. Specify number of bins desired 
2. Color the bins 
3. Make outline of each bin white 
4. zorder makes the bins on top of the grid lines in the back 
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Valida(ng: check the residuals 
The residuals seem 
normal, let's check 
the Q-Q plot! 
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Valida(ng: check the residuals 
# Now let's check the residuals for normality of distribution using the Q-Q plot 
sm.qqplot(mlr_final_results.resid, line = 's')  
plt.title('Q-Q Plot to Test Normality of Residuals', fontsize = 24) 
plt.xlabel('Theoretical Quantiles', fontsize = 18) 
plt.ylabel('Sample Quantiles', fontsize = 18) 
plt.grid(.25, linestyle = 'dashed') 

Script 

Looks like our model has slightly heavier 
tails than a normal distribu;on. Since the 
difference is only slight, these are 
probably good enough! 
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Valida(ng: check the residuals 
# Does the variance of the residuals change with the predicted value? 
plt.scatter(mlr_final_results.fittedvalues,  
            mlr_final_results.resid,  
            color = 'black') 
plt.plot(mlr_final_results.fittedvalues,  
         np.zeros((1000, )), color = 'orange') 
plt.xlabel('Fitted Value', fontsize = 18) 
plt.ylabel('Residual',  
           fontsize = 18) 
plt.grid(.25, linestyle = 'dashed') 
 
plt.scatter(mlr_final_results.predict(), mlr_final_results.resid.abs(), color = 'black') 
plt.plot(mlr_final_results.predict(), np.zeros((1000, )), color = 'orange') 
plt.xlabel('Fitted Value', fontsize = 18) 
plt.ylabel('Absolute Value of Residual', fontsize = 18) 

Script 

There should not be a paIern but there is clearly a triangular shape to the absolute 
value of the residuals. This means we're not taking something into account. 
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Valida(ng: check the residuals 

Looks like the residuals follow 
somewhat of a parallelogram pamern, 
which means that our model is not 
taking something into account. 
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•  A good explanatory model will have residuals whose variance does not depend 
on the independent (predictor) variables 

•  If the variance of the residuals is affected by the magnitude of the independent 
variables then heteroscedas;city is present 
–  This means we have to refine our model further as there is an effect that we're not taking 

into account 

•  To test for this, run a regression solving for the error terms using the 
independent variables in the model 

71 

Tes(ng for heteroscedas(city 

y = mx2 + b + error 
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•  y = mx2 + b + error 

•  error = a + m1x1 + m2x2 + m3x3 + m4x4 … mnxn 

•  If there is no heteroscedas;city, then the coefficients m will not be material, 
they will all be equal to 0 or close to it 

•  error = 0 + 0x1 + 0x2 + 0x3 + 0x4 … 0xn = ~0 

72 

Tes(ng for heteroscedas(city 



L I N E A R  R E G R E S S I O N ,  P T  2  D A T A  S O C I E T Y  ©  2 0 1 7  

•  error = a + m1x1 + m2x2 + m3x3 + m4x4 … mnxn 

•  N = number of points in the data set 
•  R2 = the R2 of the regression equa;on for the error term 

•  Heteroscedas;city (Breusch-Pagan) test: 
              H = N*R2 

•  H is tested against a X2 distribu;on (chi-squared)                                                                                          
given the degrees of freedom                                                                                                                
(number of data points –                                                                                                       
number of model parameters) 

•  The p-value of the distribu;on tells you if                                                                       
heteroscedas;city is likely present                                                                                                             
(if the regression model for the errors explains them) 
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Tes(ng for heteroscedas(city 

Degrees of 
freedom 

H value 

p-value 
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Homoscedas(city example 
# Example with homoscedasticity (no heterscedasticity present) 
sample_data = np.column_stack(([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20], 
                               [2, 4, 3, 2, 6, 8, 10, 7, 6, 9, 20])) 
sample_df = pd.DataFrame(sample_data, columns = ['x_data', 'y_data']) 
sample_lm = ols('y_data ~ x_data',  
                data=sample_df).fit() 
 
plt.scatter(sample_df['x_data'],  
            sample_df['y_data'],  
            color = 'black') 
plt.plot(sample_df['x_data'],  
         sample_lm.fittedvalues,  
         color = 'orange') 

Script 
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Homoscedas(city example 
# Plot residuals vs. fitted values. 
plt.scatter(sample_lm.fittedvalues,  
            sample_lm.resid,  
            color = 'black') 
plt.plot(sample_lm.fittedvalues,  
         np.zeros((11, )),  
         color = 'orange') 
plt.xlabel('Fitted Values',  
           fontsize = 18) 
plt.ylabel('Residual',  
           fontsize = 18) 
plt.grid(.25,  
         linestyle = 'dashed') 

Script 
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Breusch-Pagan test 
# You can run the Breusch-Pagan test with het_breuschpagan function in the 
# statsmodels.stats.api module.  
import statsmodels.stats.api as sms 
from statsmodels.compat import lzip 
 
# Labels for output of test 
name = ['Lagrange multiplier statistic', 'p-value’, 'f-value', 'f p-value'] 
test_sample = sms.het_breuschpagan(sample_lm.resid, sample_lm.model.exog) 
lzip(name, test_sample) # pairs each output from test with its meaning 

Script 
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Breusch-Pagan test 
# Both p-values are very large for the sample data, which means that the 
# regression model for the error terms has poor explanatory power, which in  
# turn means that there is NO heteroscedasticity. 
test_mlr = sms.het_breuschpagan(mlr_final_results.resid, mlr_final_results.model.exog)                            
lzip(name, test_mlr) 
 
# While the p-value is not as high as the sample data, it is still above 
# our 5% significance level. This means that our regression model for the  
# error terms has some explanatory power, but NOT enough to say that there is 
# heteroscedasticity present. 
 

Script 
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Exercise (me! 
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•  If you would rather trust the residual plot rather than the Breusch-Pagan test, 
there are  

•  various ways to deal wth heteroscedas;city, including: 

•  Transforma;on of the dependent or independent variables 

•  Instead of ordinary least squares, try weighted least squares 

•  Add polynomial or interac;on terms 

•  Choose a non-linear model 

79 

Poten(al remedies 
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1.  Single variable linear regression 
2.  Mul;ple linear regression 
3.  Model selec;on 
4.  Measuring variance and error 
5.  Dealing with outliers 
6.  Checking for model validity 
7.  Interac;ons 
8.  Regression with categorical variables 
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Outline: Intro to Regression 



L I N E A R  R E G R E S S I O N ,  P T  2  D A T A  S O C I E T Y  ©  2 0 1 7  

•  Some variables may represent different 
things but nonetheless may amplify one 
another 

•  Example: 
–  Smoking and asbestos are different things, both 

cause lung cancer, but when combined the risk 
of gejng lung cancer mul8plies! 

•  To capture this addi;onal risk of both risk 
factors being present together, an 
interac;on term should be added to the 
model 

81 

Variable interac(ons 
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•  In the context of our NBA fan behavior analysis: 

– Both income and games watched (up to a certain point) increase total revenue spent. 

–  It would make intui;ve sense that a fan with more income who watched a lot of games 
would further increase the expected total revenue spent!  
•  Therefore, we should consider tes;ng the interac;on term of income and games watched! 
 

•  Combining variables can decrease interpretability, but increase predic;ve 
accuracy – keep your objec;ves in mind! 

82 

Variable interac(ons 



L I N E A R  R E G R E S S I O N ,  P T  2  D A T A  S O C I E T Y  ©  2 0 1 7  83 

Variable interac(ons 
data.loc[data['Income'] <= 50000, 'IncomeLevel'] = 1 
data.loc[(data['Income'] > 50000) & (data['Income'] <= 125000), 'IncomeLevel'] = 2 
data.loc[data['Income'] > 125000, 'IncomeLevel'] = 3          
 
# Build interaction model 
rev = data['TotRevSpend'] 
gw = data['GamesWatched'] 
il = data['IncomeLevel'] 
rev_il_gw_interaction_lm = ols( 
        formula = 'rev ~ gw*il', data = data).fit() 
  
# If you want il encoded with dummy variables, use C(il) in the formula.  
rev_il_gw_interaction_lm.summary()  

Script 
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Variable interac(ons 
OLS Regression Results                             

============================================================================== 
Dep. Variable:                    rev   R-squared:                       0.229 
Model:                            OLS   Adj. R-squared:                  0.227 
Method:                 Least Squares   F-statistic:                     98.76 
Date:                Fri, 24 Nov 2017   Prob (F-statistic):           5.79e-56 
Time:                        15:25:23   Log-Likelihood:                -6977.6 
No. Observations:                1000   AIC:                         1.396e+04 
Df Residuals:                     996   BIC:                         1.398e+04 
Df Model:                           3                                          
Covariance Type:            nonrobust                                          
============================================================================== 
                 coef    std err          t      P>|t|      [0.025      0.975] 
------------------------------------------------------------------------------ 
Intercept     52.4691     58.907      0.891      0.373     -63.127     168.066 
gw             8.6731      2.457      3.531      0.000       3.852      13.494 
il            93.1757     25.858      3.603      0.000      42.434     143.917 
gw:il          0.3719      1.038      0.358      0.720      -1.665       2.408 

Console 
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Variable interac(ons 
# To do this in scikit-learn: 
# Not one hot encoded 
poly = preprocessing.PolynomialFeatures(2, interaction_only = True,  
                                        include_bias = False)     
il_gw_interaction_sklearn = poly.fit_transform(data[['GamesWatched', 'IncomeLevel']]) 
rev_il_gw_interaction_lm_sklearn = LinearRegression() 
rev_il_gw_interaction_lm_sklearn.fit(il_gw_interaction_sklearn, rev) 
rev_il_gw_interaction_fitted =  
        rev_il_gw_interaction_lm_sklearn.predict(il_gw_interaction_sklearn) 
 
r2_score(rev, rev_il_gw_interaction_fitted) 
# 22.9% 
 
# If a categorical variable has n levels, then a one-hot encoding of that variable will 
create n dummy variables. 
 
 

Script 
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Variable interac(ons 
# To do this in scikit-learn: 
# One-hot encoding 
from sklearn.preprocessing import OneHotEncoder 
 
integer_encoded = data['IncomeLevel'].values.reshape(len(data['Income']), 1) 
onehot_encoder = OneHotEncoder(sparse = False) 
onehot_encoded = onehot_encoder.fit_transform(integer_encoded) 
poly_onehot = preprocessing.PolynomialFeatures(2, interaction_only = True,  
                                               include_bias = False) 
il_gw_interaction_lm_sklearn_onehot = 
poly_onehot.fit_transform(data['GamesWatched'].values.reshape(-1, 1), onehot_encoded) 
rev_il_gw_interaction_lm_sklearn_onehot = LinearRegression() 
rev_il_gw_interaction_lm_sklearn_onehot.fit(il_gw_interaction_lm_sklearn_onehot, rev) 
rev_il_gw_interaction_onehot_fitted = 
rev_il_gw_interaction_lm_sklearn_onehot.predict(il_gw_interaction_lm_sklearn_onehot) 
r2_score(rev, rev_il_gw_interaction_onehot_fitted) 
 
# 17.2% - Performed worse! 
# Using this encoding we lose information on the ordering of income levels! 
 

Script 
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Variable interac(ons 
## Let's include interaction terms in our model selection process from lecture 1. 
rev_scaled = y_scaled 
dist_scaled = X_scaled[:, 0:1] 
gw_scaled = X_scaled[:, 1:2] 
inc_scaled = X_scaled[:, 2:3] 
fs_scaled = X_scaled[:, 3:4] 
yid_scaled = X_scaled[:, 4:5] 
fc_scaled = X_scaled[:, 5:6] 
 
mlr_interaction = ols(formula = 'rev_scaled ~ dist_scaled + gw_scaled + inc_scaled +  
                      fs_scaled + yid_scaled + fc_scaled + gw_scaled * il + fs_scaled *  
                      il', 
                      data = pd.DataFrame(data_scaled)).fit() 
mlr_interaction.summary() 
 

Script 
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Variable interac(ons 
 OLS Regression Results                             

============================================================================== 
Dep. Variable:             rev_scaled   R-squared:                       0.568 
Model:                            OLS   Adj. R-squared:                  0.564 
Method:                 Least Squares   F-statistic:                     144.6 
Date:                Fri, 24 Nov 2017   Prob (F-statistic):          1.18e-173 
                                 
================================================================================ 
                   coef    std err          t      P>|t|      [0.025      0.975] 
-------------------------------------------------------------------------------- 
Intercept        0.3615      0.161      2.245      0.025       0.045       0.678 
dist_scaled     -0.4169      0.022    -18.723      0.000      -0.461      -0.373 
gw_scaled        0.2702      0.073      3.716      0.000       0.128       0.413 
inc_scaled       0.2875      0.051      5.690      0.000       0.188       0.387 
fs_scaled        0.0929      0.074      1.248      0.212      -0.053       0.239 
yid_scaled       0.2735      0.022     12.471      0.000       0.230       0.317 
fc_scaled       -0.0175      0.028     -0.634      0.526      -0.072       0.037 
il              -0.1602      0.071     -2.266      0.024      -0.299      -0.021 
gw_scaled:il    -0.0045      0.031     -0.147      0.883      -0.065       0.056 
fs_scaled:il    -0.0079      0.030     -0.262      0.793      -0.067       0.051 

Script 
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Variable interac(ons 
# To use RFE for model selection we need a LinearRegression object of sklearn 
mlr_poly = preprocessing.PolynomialFeatures(2, interaction_only = True,  
                                            include_bias = False) 
gw_scaled_il_to_transform = np.column_stack([gw_scaled, data['IncomeLevel'].values]) 
gw_scaled_il_interaction = mlr_poly.fit_transform(gw_scaled_il_to_transform) 
 
# Add the il and interaction column to our already scaled matrix of predictors 
X_scaled_interaction = np.column_stack([X_scaled, gw_scaled_il_interaction[:, 1:]]) 
 
 
# Drop income column now that we have  
mlr_interaction_sklearn = LinearRegression() 
mlr_interaction_sklearn.fit(X_scaled_interaction, y_scaled) 
 
 
 
 
 

Script 
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Variable interac(ons 
R_squared_comparison = [] 
 
for i in range(1, X_scaled_interaction.shape[1] + 1): 
    rfe = RFE(mlr_interaction_sklearn, i) 
    rfe_fit = rfe.fit(X_scaled_interaction, np.ravel(y_scaled)) 
    X = X_scaled_interaction[:,np.ravel(np.where(rfe_fit.ranking_ == 1))] 
    mlr = LinearRegression() 
    mlr.fit(X, y_scaled) 
    y_mlr_fitted = mlr.predict(X) 
    R_sq = r2_score(y_scaled, y_mlr_fitted) 
    R_squared_comparison.append(R_sq) 
 
plt.plot(range(1, X_scaled_interaction.shape[1] + 1),  
         R_squared_comparison,  
         marker = '.',  
         markersize = 10) 
plt.title('Model Comparison Using RFE With Interaction', fontsize = 24) 
plt.xlabel('Number of Most Important Features', fontsize = 18) 
plt.ylabel('R^2', fontsize = 18) 
plt.grid(.25, linestyle = 'dashed') 
 

Script 
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Variable interac(ons 
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•  Our best model according to RFE even with the possibility of an interac;on 
between games watched and income level did not change.  

 
•  Perhaps the rela;onships in the real world are simply non-linear? 
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Variable interac(ons 
# Do any of the interaction terms show up in our most important features? 
# Similar to lecture 1, 4 features seems to be the optimal number without too much 
# model complexity. 
rfe_interaction = RFE(mlr_interaction_sklearn, 4) 
rfe_interaction_fit = rfe_interaction.fit(X_scaled_interaction, np.ravel(y_scaled)) 
rfe_interaction_fit.ranking_ 
 
 

Script 
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U(lize the model for predic(on 
# If you decide to use this model and need to make a prediction based on  
# some input variables, here is how you would do that: 
# Get your testing data 
test = xls.parse('Prediction')     
del test['Unnamed: 0'] 
 
# Standardize test data 
new_data = preprocessing.scale(test.iloc[:, 2:]) 
 
# Select DistToArena, GamesWatched, Income, YrsInDatabase 
# Delete other variables 
X_scaled_for_pred = np.delete(X_scaled, [3, 5], axis = 1) 
new_data_for_pred = np.delete(new_data, [3, 5], axis = 1)  
 
# First fit the model to the data then predict revenue spent with the new data. 
mlr = LinearRegression() 
mlr.fit(X_scaled_for_pred, y_scaled) 
mlr_prediction = mlr.predict(new_data_for_pred) 

Script 

These are your predic;ons for the new data! 
Remember that these are standardized predic;ons! 
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Exercise (me! 
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•  Should you build a separate model for each level of fan sa;sfac;on? 

•  Should you build a model to understand what drives both the number of games 
watched and sa;sfac;on level? 

•  Should you build separate models to understand what drives spending behavior 
for both casual and die-hard fans?  
– Could leverage this informa;on to understand which factors don’t mamer to fans and 

don’t affect their behavior? 
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Other models to consider 
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1.  Outliers 

2.  Mul;collinearity and correla;on among the variables 

3.  Adjusted R squared 

4.  Model bias and distribu;on of residuals (Q-Q plot) 

5.  Standard devia;on of residuals to assess model fit 

6.  Heteroscedas;city / pamern of residuals vs. fimed values 

96 

Key things to check! 
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•  As much as 40% of trading on the London Stock Exchange is es;mated to be 
driven by trading algorithms 

97 

Predic(on: use cases 

•  Ski manufacturers predict demand for skis each winter, stocking up on 
supplies 

•  Life insurance companies predict the age of death in order to approve policies 
and set pricing 

•  Energex (Australian u;lity) predicts 20 years of electricity demand growth to 
direct infrastructure investment 

•  Harrah's Hotel and Casino in Las Vegas predicts how much a customer will 
spend over the years, es;ma;ng their life;me value to the casino 

Source: Predic;ve Analy;cs by Eric Siegel 
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Metric Purpose 
1 Variance Measure of how dispersed the data is 

2 Standard deviaQon Standardized measure of how dispersed the data is 

3 Q-Q plot  / distribuQon of errors Check if there is bias in the data or the model 

4 Covariance Measure of linear relaQonship between variables (posiQve / negaQve) 

5 CorrelaQon Measure of strength of linear relaQonship between variables (posiQve / negaQve) 

6 Slope How a change in variable x will affect variable y 

7 R2 % of variaQon in y that can be explained by the variaQon in x 

8 Adjusted R2 Modified R2 when there are many independent variables in the model 

9 p-values The probability that the paeern exists through random chance 

10 VIF Test for mulQcollinearity and independent variable interacQon 

11 Breusch-Pagan test Check the residuals for heteroscedasQcity (paeern conQngent on fieed values) 

12 AIC Check for informaQon loss when selecQng the right model for your data 
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Recap: what we know so far 


