
INTRODUCTION TO SQL DATA SOCIETY © 2017

®

The premiere data science training for professionals

“One should look for what is and not what he thinks should be.”

- Albert Einstein

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Please confirm that the following technology is working properly:

1. Confirm that you have SQL Server software installed correctly

2. Save the following files to your desktop for this section

(files previously sent to you from Data Society)
– Claims.txt

– crime_incidents_2013_data.csv

– crime_incidents_2013_location.csv

– Divisions.txt

– Franchises.txt

– Teams.txt

1

Welcome to Intro to SQL

INTRODUCTION TO SQL DATA SOCIETY © 2017

1. Overview of SQL

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

2

Outline

INTRODUCTION TO SQL DATA SOCIETY © 2017

1. Develop a basic understanding of relational databases and SQL

2. Setting up Management Studio and importing data

3. Learn foundational SQL query concepts

3

Objectives

INTRODUCTION TO SQL DATA SOCIETY © 2017

• SQL is short for Structured Query Language. It is the standard language used to
communicate with most relational databases

– SQL queries are sent to a database to ask it to perform a specific task with the data it
stores

• Microsoft SQL Server is a type of relational database

4

What is SQL?

VS

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Learn to Import/Export, manipulate, combine, and aggregate data sets using
SQL Management Studio

• These lessons are structured with the intent of using SQL server as an
intermediary to store and aggregate data as displayed in the image below

5

Goals for Intro to SQL

Data Storage
& Aggregation Analysis

Source Data UploadUpload

Export / Import
for Analysis

Export / Import
for Storage

INTRODUCTION TO SQL DATA SOCIETY © 2017 6

Why use SQL?

SQL Access Excel

Data Size Limits Best option for analyzing large data sets (over
1 million records)

Handles larger data sets than Excel, but can
be limited by memory and space of local
computers

Limited to 1,048,576 records for data sets

Manipulating
Data

Multiple queries can easily be combined to
coerce data from multiple data sets

Querying capabilities similar to SQL with less
flexibility and capabilities

Combining data sets can be difficult and
prone to manual and formula errors

Analyzing /
Reporting Data

Limited built-in analysis functions and lack of
built-in reporting and visualization
capabilities

Built in form and report capabilities for easy
reporting, but more limited set of analysis
functions

Many built in analysis functions,
visualizations, and formatting for easy
modeling and reporting

Speed Faster Processing Slower processing Slower Processing

Compatibility Compatible with most visualization, business
intelligence, and statistical analysis platforms

Compatible with many visualization, business
intelligence, and statistical analysis platforms

Compatible with most visualization, business
intelligence, and statistical analysis platforms

Quality Control SQL Queries create repeatable and auditable
analysis processes that can be clearly
commented

Access Queries also create repeatable
processes, but are often less transparent than
SQL queries

Excel Analyses are harder to replicate due to
manual steps that can be difficult to audit

Learning Curve Can be easy to learn for people without a
programming background

Can be easy to learn for people without a
programming background

Easy to learn for any analyst

Great Average Limited

INTRODUCTION TO SQL DATA SOCIETY © 2017

• What is a relational database?
– Relational databases store data in the form of tables that can be related to one another

based on common attributes in the columns and rows of those tables

– SQL Queries can leverage these relationships to rearrange the data stored in database
tables

7

Intro to relational databases

People

• Contact ID
• Contact Name
• SSN
• Phone Number

Accounts

• Contact ID
• Business ID
• Account Number
• Account Balance

Business

• Business ID
• Industry
• Business Name

Customer Database

SQL Query

Analysis

• Business Name
• Industry
• Contact Name
• Phone Number
• Account Balance

INTRODUCTION TO SQL DATA SOCIETY © 2017

• SQL Server Management Studio is an environment used by analysts to access the
capabilities of SQL Server:

– Import/Store/Export data

– Execute queries

• Combine existing data

• Update existing data

• Extract, summarize, and/or aggregate data

• Perform calculations on existing data

• Create and delete data tables

– Administrative functions

• Database security and access control

8

SQL Server general functionality

DATASOCIETYSERVER01 (SQL Server 12.3.6234 – DS\JDOE)

DATABASE_01

DATABASE_02

DATABASE_01

DAT…S\JDOE(102)

DATASOCIETYSERVER01 DS\JDOE

*Screen Shot from SQL Server Management Studio

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Servers

• Databases

• Tables

9

SQL Server general components

SQLSQL
SQL

• Server – database servers are programs that provides database services to other computer programs

• Database – is a container of data/information organized into tables (and other structures) so that they can be easily managed and accessed back in
same fashion.

• Table – data stored in a tabular format with rows of named columns

• SQL Server Management Studio – An application used to configure, manage, and administer components of SQL server (i.e. the user interface for
accessing servers, databases, and tables to launch commands to the server)

SQL Server Management Studio

INTRODUCTION TO SQL DATA SOCIETY © 2017

• In this activity we will connect to a SQL Server, create a new database,
open a new query window, and select a SQL database to query from

10

Exercise 1 - connect to SQL
1 2

3

1 3 4

4

2

DATASOCIETYSERVER01 (SQL Server 12.3.6234 – DS\JDOE)

Getting Started

• Connect to the “XXXXXXX”
Server created on your
computer when SQL Express
was installed

• Create a database and call it
“Data_Society_SQL_Class”

• Create a new SQL script by clicking
on “New Query in the toolbar

• Select the database for the SQL
script to refer to by selecting
“Data_Society_SQL_Class” in the
dropdown menu

INTRODUCTION TO SQL DATA SOCIETY © 2017

• There are 3 methods for importing data into SQL server. This class will focus on
using the Import/Export Wizard; however, it is important to understand the
other methods:

11

Data loading

Import/Export Wizard Bulk Inserts SQL Server Integration
Services (SSIS)

Description Gives users a point and click interface
to upload tables into SQL server while
using Management Studio

Handles larger data sets than Excel, but
can be limited by memory local
computers

Uses Microsoft Visual Studio to create a
process flow for importing and
transforming tables

Advantages • Easy user interface
• Best use is for small tables with little

chance of import error:
- Basic look up table containing a

value and description
- Sample data sets

• Creates a repeatable audit trail
• Does not manipulate data to allow

import to succeed

• Creates a repeatable audit trail
• Dynamically import multiple files
• Import similar files using loops
• Perform additional transformations

and queries before and after table
imports

Drawbacks • Can alter data to fit into a defined
table rather than resulting in an error

• More difficult to set up and execute
- relationship between the syntax,

format files and data files can be
hard to work with

• Requires learning Microsoft Visual
Studio

• More difficult to set up and has
some situations requiring new syntax

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Uploading Files using the Import/Export Wizard
– Upload 3 files using Import/Export Wizard following the directions in the SQL script

accompanying these slides

• Claims.txt

• crime_incidents_2013_data.csv

• crime_incidents_2013_location.csv

12

Exercise 2a - loading data

Open Import/Export Wizard Follow Import Steps

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Use code to create and import table using bulk insert

– Create a table and import the following text files into SQL Server using the SQL script
accompanying these slides

• Franchises.txt

• Teams.txt

• Divisions.txt

13

Exercise 2b - loading data

INTRODUCTION TO SQL DATA SOCIETY © 2017

Database

• Often tables imported into SQL are not ready for analysis

• When preparing for an analysis think of three types of tables:

– Raw - freshly imported into the SQL environment

– Intermediate - mirror of raw tables with fields transformed into usable data types

• Ex: dates might be imported as text and require transformation into a date format for analysis

– Analysis – tables with the fields required for an analysis

14

Post import data treatment

Source Data
Tables

SQL Import Analysis Results
and Reports

Raw TablesRaw TablesRaw Tables
Intermediat

e Tables
Intermediat

e Tables
Intermediate

Tables
Transform Prep

Intermediat
e Tables
Intermediat

e Tables
Analysis
Tables

Analysis

*Note: it is a best practice to name tables to distinguish these table types (Ex. tbl_Raw_Procurement_Data _2016)
• This will be covered further in the Best Practices section

INTRODUCTION TO SQL DATA SOCIETY © 2017 15

Query examples and explanation

• SQL Queries follow a standard order of statements that must
be followed in each query for SQL server to understand a query

–Not all statements are required for every query, but the same order of
commands must be maintained

1. SELECT

2. INTO

3. FROM

4. WHERE

5. GROUP BY

6. HAVING

7. ORDER BY

INTRODUCTION TO SQL DATA SOCIETY © 2017 16

Query examples and explanation

SELECT Contract_NO

, Business_ID

, Sale_Amount

, Count(*) as ‘Row_Count’

INTO tbl_DS_Contract_Counts

FROM tbl_DS_Sample

WHERE Contract_NO like ‘%123%’

GROUP BY Contract_NO

, Business_ID

, Sale_Amount

HAVING Count(*)>1

ORDER BY Contract_NO

, Sale_Amount

1. SELECT – defines the fields that will be included in the new

table requested by a query from other tables and from functions

2. INTO – declares that a query will create a new table in the

database

3. FROM – defines the existing tables that a query will draw data

from

4. WHERE – filters the query results based on criteria from the

original tables

5. GROUP BY – aggregates query results to include distinct values

of the selected fields

6. HAVING – Similar to WHERE, except can contain aggregate
functions. HAVING clauses can reference any of the items that

appear in the select list

7. ORDER BY – sorts the query results in order by the indicated

fields

INTRODUCTION TO SQL DATA SOCIETY © 2017

• The basic component of a SQL query is the SELECT statement which can be

used to:

1. Return text

2. Return the results of basic math or other operations

3. Returns 1 or more fields from a table in the FROM clause

17

Querying basics: SELECT & FROM

SELECT *

FROM tblClaims

SELECT STAR - Return 793 records from all

columns

SELECT ClaimID, MemberID

FROM tblClaims

SELECT Columns – Returns 793 records of

specified columns

SELECT TOP 20 *

FROM tblClaims

SELECT TOP X – Returns the first X Records

from columns selected

SELECT DISTINCT Gender

, ProviderType

FROM tblClaims

SELECT DISTINCT – Returns 11 unique records

(no duplicates) across the columns selected

INTRODUCTION TO SQL DATA SOCIETY © 2017

• The WHERE clause is used to filter records from a table based on logical criteria
defined in the WHERE clause
– Logical operators will be discussed in more detail later, but this includes equality, ranges,

and pattern matching

18

Querying basics: WHERE

SELECT *

FROM tblClaims

WHERE Diagnosis = 'V16.3'

Where Specific Column Value – returns 3
records WHERE the diagnosis is equal to
“V16.3”

SELECT *

FROM tblClaims

WHERE CAST(Paid AS MONEY) > 100

AND CAST(Paid AS MONEY) < 200

Where value range – returns 105 records
WHERE the claim payment was between
$100 and $200

Note: the Paid column was uploaded in a text formats
and therefore needs to be converted to a numeric
data type in order to be compared to the desired
numerical range

INTRODUCTION TO SQL DATA SOCIETY © 2017

• The GROUP BY clause is used to return unique records (no duplicates) across columns
selected
– GROUP BY statements are different from using SELECT DISTINCT because it allows

aggregation functions (e.g. counts, sums, etc.)

• The HAVING clause can only be used in conjunction with GROUP BY. It acts as an
additional WHERE clause for the results of a GROUP BY statement or the results of any
aggregation functions used in conjunction with the grouping

19

Querying basics: GROUP BY & HAVING

SELECT Gender, ProviderType

, COUNT(*) AS Counts

FROM tblClaims

GROUP BY Gender, ProviderType

GROUP BY with count – returns 11 unique
records and the counts of occurrences for
each combination of records in the original
data set

SELECT Gender, ProviderType

, COUNT(*) AS Counts

FROM tblClaims

GROUP BY Gender, ProviderType

HAVING ProviderType = '246'

AND COUNT(*) >= 5

GROUP BY with Count and HAVING criteria –
returns 2 of the unique records from the
original query based on additional filtering
from the HAVING clause

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Aggregate functions are used to summarize data by rolling up a set of data
items into a single item (or multiple line items when using “GROUP BY”)

• SQL aggregation functions include:
– MIN

– MAX

– SUM

– AVG

– COUNT

20

Querying basics: aggregation

--Aggregating on an entire table

SELECT MIN(Cash_Balance) AS 'MIN', MAX(Cash_Balance) AS 'MAX'

, SUM(Cash_Balance) AS 'SUM', AVG(Cash_Balance) AS 'AVG'

, COUNT(Cash_Balance) AS 'COUNT'

FROM #tbl_cash_balances

--Aggregating by groups

SELECT [GROUP]

, MIN(Cash_Balance) AS 'MIN', MAX(Cash_Balance) AS 'MAX'

, SUM(Cash_Balance) AS 'SUM', AVG(Cash_Balance) AS 'AVG'

, COUNT(Cash_Balance) AS 'COUNT'

FROM #tbl_cash_balances

GROUP BY [GROUP]

tbl_cash_balances

Group Cash_Balance

A 20

B 50

B 100

D 120

E 30

MIN MAX SUM AVG COUNT

20 120 320 64 5

GROUP MIN MAX SUM AVG COUNT

A 20 20 20 20 20

B 50 100 150 75 2

D 120 120 120 120 120

E 30 30 30 30 30

INTRODUCTION TO SQL DATA SOCIETY © 2017

--Sort Ascending

SELECT [GROUP], [Cash_Balance]

FROM #tbl_cash_balances

ORDER BY [Cash_Balance]

• The ORDER BY query statement is used to sort query results

– Query results can be sorted by one or more fields

– Using ASC or DESC after a field explicitly sorts the results in ascending or descending

order, respectively

• When there is no explicit reference the sorting defaults to ascending

21

Querying basics: sorting data

--Sort Descending

SELECT [GROUP], [Cash_Balance]

FROM #tbl_cash_balances

ORDER BY [GROUP] DESC

tbl_cash_balances

Group Cash_Balance

A 20

B 50

B 100

D 120

E 30

Group Cash_Balance

A 20

E 30

B 50

B 100

D 120

Group Cash_Balance

E 30

D 120

B 50

B 100

A 20

Note that only
columns explicitly

called will be sorted

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Saving results: If query results need to be saved for later reference or analysis
there are several methods to save those results:
– Exporting results (save results as a .csv file or copy results into a spreadsheet)

– Using the INTO clause to create a permanent or temporary table
• Permanent Table (use “INTO TableName”) – Creates a permanent table that will appear in a

database for all users

• Local Temporary Table (use “INTO #TableName”) – Visible only to their creators during the same
connection to an instance of SQL Server as when the tables were first created or referenced

• Global Temporary Table (use “INTO ##TableName”) – Visible to any user and any connection after
they are created, and are deleted when all users that are referencing the table disconnect from the
instance of SQL Server

22

Querying basics: saving results

SELECT *

INTO tblClaims_copy

FROM tblClaims

SELECT *

INTO #tblClaims_tmp_local

FROM tblClaims

SELECT *

INTO ##tblClaims_tmp_global

FROM tblClaims

Create Permanent Table Create Local Temporary Table Create Global Temporary Table

INTRODUCTION TO SQL DATA SOCIETY © 2017

• the DROP TABLE command is used to remove tables from a database

• This command will remove a table from a database permanently and this is not
a reversible action
– BE EXTREMELY CAREFUL when dropping tables in a database (especially permanent

tables)

– It is often helpful to have a statement to drop temporary tables (and sometimes
permanent analysis tables) prior to the statement creating those tables in a script to
streamline updates to an analysis

23

Querying basics: deleting tables

DROP TABLE tblClaims_copy

DROP TABLE #tblClaims_tmp_local

DROP TABLE ##tblClaims_tmp_global

Dropping Tables

Analysis Use Example

DROP TABLE #tblDemosFranchises

SELECT * INTO #tblDemosFranchises

FROM [dbo].[tblDemosFranchises]

--WHERE Active = 'NA'

--(50 row(s) affected) (WHERE Active = 'NA')

WHERE Active = 'Y'

--(60 row(s) affected) (WHERE Active = 'Y')

INTRODUCTION TO SQL DATA SOCIETY © 2017

Comments are non-executing text statements that should be used to explain queries

• Syntax:

– In line comments – all text after “--“ will not be read by SQL Server when a query is run

– Block comments - all text between “/*“ and “*/” will not be read by SQL Server when a query
is run

24

Querying basics: commenting code

SELECT Contract_NO -- (This Text will not affect the query)

FROM [tbl_DS_Sample]

SELECT Contract_NO

/* (This Text

will not

affect the query) */

FROM [tbl_DS_Sample]

INTRODUCTION TO SQL DATA SOCIETY © 2017

Formatting and commenting SQL code should be done in a consistent and
repeatable manner to make your code easier to proofread and change

• Poor formatting – lines run off the screen making code hard to read

• Good formatting – comments and code are in logical order and easily read

25

Querying basics: formatting code

--Step 1) Look at all Contract numbers in scope

SELECT Contract_NO

FROM [tbl_DS_Sample]

WHERE Contract_NO = '54345F'

SELECT Contract_NO FROM [tbl_DS_Sample] WHERE Contract_NO = '54345F'

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Practice writing basic SQL statements

• Remember to use proper formatting and appropriate comments

26

Exercise 3 - writing basic SQL

INTRODUCTION TO SQL DATA SOCIETY © 2017 27

Questions?

INTRODUCTION TO SQL DATA SOCIETY © 2017

1. Overview of SQL

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

28

Outline

INTRODUCTION TO SQL DATA SOCIETY © 2017

1. Understand, manipulate, and alter SQL Data types

2. Learn how to change data in tables

29

Objectives

INTRODUCTION TO SQL DATA SOCIETY © 2017

There are many different data types
in SQL Server; however, there are 3
main data type categories:

• Numeric: contains numbers and can be
used in mathematical operations

• Character: contains strings of text and
can be searched for words and phrases
or concatenated

• Date: contains dates and/or times that
are stored as number allowing date type
fields to also be used in mathematical
operations

30

SQL data types

Numeric Character Date

1 A123F 1/01/2000

-2,000 Coffee is a great way
to start off your day

2005-07-01
00:00:00:000

$250.35 Automobile June 16 2013

0.0023464 Desk Monday, January 31
2002

Data type examples

Examples of data types
Numeric Data Types

• Int

• Money

• Bit

• Decimal

Character Data Types

• Char

• Varchar

• Nvarchar

Date Data Types

• Datetime

• Date

• Time

INTRODUCTION TO SQL DATA SOCIETY © 2017

• NULL values are non-existing records in a field. They are different from "blank" or
"zero-length” string values (i.e. “”)

– NULL values are excluded from aggregate functions:
• Example: when SQL counts the number of records in the ID_Number column (“COUNT(ID_Number)”)

it returns a count of 2

– NULL values do not link to one another when they are in a field being used as the
relationship for combining tables

• To locate NULL values, use “IS NULL” (or “IS NOT NULL”) in a WHERE clause

– Example: “WHERE ID_Number IS NULL” would return only row 3 in the table below

31

NULLs

NULL Values

BLANK Values

INTRODUCTION TO SQL DATA SOCIETY © 2017

• The CAST and CONVERT functions explicitly convert expressions of one data

type into another

• Function syntax:
– CAST ([FIELD NAME] AS [DATA TYPE])

– CONVERT ([DATA TYPE], [FIELD NAME])

32

CAST and CONVERT functions

--Convert Text Date to a Datetime format

SELECT CONVERT(date,'1/1/2000')

--Convert Text number to a numeric format

SELECT CAST(‘1.0023567’ AS MONEY)

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Evaluates a list of conditions and returns one of multiple result expressions
based on logical statements

• Types of logical operators

– Simple (equality check)

– Searched (expressions with additional logic such as >, <, AND, OR, etc.)

33

Case statements

--Case Statement Syntax

CASE WHEN ... THEN

[WHEN ... THEN]

[ELSE]

END

--Case Statement Example

CASE WHEN Amount_1 > Amount_2 THEN ‘> Amount_1’

WHEN Amount_1 <= Amount_2 THEN ‘<= Amount_1’

ELSE ‘N/A’

END

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Table:

• Query

• Results

34

Case statement example

SELECT Yr

, TeamID

, CASE

WHEN Points > 910 THEN 'Great Offense'

WHEN Points < 910 THEN ‘Poor Offense'

ELSE 'Unknown'

END AS 'Offensive Rating'

FROM #tblDemosTeams_case_ex

Yr TeamID Points

2001 ABC 1024

2015 ABC 910

2017 BCD 500

#tblDemosTeams_case_ex

Yr TeamID Offensive Rating

2001 ABC Great Offense

2015 ABC Unknown

2017 BCD Poor Offense

Note that the logic in this case
statement does not address a
score of exactly 910 which is why
one result record is ‘Unknown’

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Using the tables you imported earlier, practice the syntax for:

– CASE statements

– CAST and CONVERT functions

35

Exercise 4 - data types

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Data tables can also be changed using specific statements that add, remove,
and change data values

• These statements include:

– INSERT: add records to a table

– DELETE: delete records from a table

– TRUNCATE: delete all records in a table

– UPDATE: change values

36

Changing data

INTRODUCTION TO SQL DATA SOCIETY © 2017

INSERT statements add rows from an input source into a table

• Different syntax structures

– Identical tables

– Different structures

– Values

37

Changing data: INSERT statement

tbl_cash_balances

--Insert into the same columns

INSERT INTO tbl_cash_balances
VALUES('G',90)

INSERT INTO tbl_cash_balances
SELECT 'E', 90

INSERT INTO tbl_cash_balances
SELECT [GROUP], [Cash_Balance]

FROM tbl_cash_balances_insert

--Insert different columns

INSERT INTO tbl_cash_balances ([GROUP])
SELECT [GROUP]

--the [Cash_Balance] will be populated

--with a NULL value

Group Cash_Balance

A 20

B 50

B 100

D 120

E 30

Group Cash_Balance

A 20

B 50

B 100

D 120

E 30

G 90

E 90

A 20

B 50

B 100

D 120

E 30

A NULL
B NULL
B NULL
D NULL
E NULL

tbl_cash_balances

INTRODUCTION TO SQL DATA SOCIETY © 2017

DELETE statements permanently remove rows from data tables

– Removes either an entire table or specified records

38

Changing data: DELETE Statement

--Remove all rows

DELETE tbl_cash_balances

--Remove specific Values based on conditional logic

DELETE tbl_cash_balances
WHERE [GROUP] = ‘E'

tbl_cash_balances

Group Cash_Balance

A 20

B 50

B 100

D 120

E 30

tbl_cash_balances

Group Cash_Balance

tbl_cash_balances

Group Cash_Balance

A 20

B 50

B 100

D 120

Note that DELETE without criteria

will leave a table with columns but
no records

INTRODUCTION TO SQL DATA SOCIETY © 2017

TRUNCATE statements remove all rows from a table

– The deletions are not logged making this statement faster than the DELETE statement

when working with large data sets

39

Changing data: TRUNCATE statement

--Remove all rows

TRUNCATE TABLE tbl_cash_balances

tbl_cash_balances

Group Cash_Balance

A 20

B 50

B 100

D 120

E 30

tbl_cash_balances

Group Cash_Balance

Note that TRUNCATE will leave a

table with columns but no records
similar to DELETE without criteria

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Updates the values either in an entire column or based on specific values using
conditional logic

40

Changing data: UPDATE statement

--Remove all rows

UPDATE tbl_cash_balances
SET [Cash_Balance] = 150

--Remove specific Values based on

--conditional logic

UPDATE tbl_cash_balances
SET [Cash_Balance] = 150

WHERE [GROUP] = 'E'

tbl_cash_balances

Group Cash_Balance

A 20

B 50

B 100

D 120

E 30

tbl_cash_balances

Group Cash_Balance

A 150

B 150

B 150

D 150

E 150

tbl_cash_balances

Group Cash_Balance

A 20

B 50

B 100

D 120

E 150

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Using the tables you imported earlier, practice the syntax for:
– INSERT

– DELETE

– TRUNCATE

– UPDATE

41

Exercise 5 - changing data

INTRODUCTION TO SQL DATA SOCIETY © 2017 42

Questions?

INTRODUCTION TO SQL DATA SOCIETY © 2017

1. Overview of SQL

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

43

Outline

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Understand table combination methods

• Recognize types of joins and unions

• Understand table relationships and keys

• Creating views

• Practice writing JOIN & UNION statements in SQL

44

Objectives

INTRODUCTION TO SQL DATA SOCIETY © 2017

SQL tables can be combined using JOIN or UNION statements to merge columns

or records respectively

45

SQL table combinations

UNIONJOIN

• A JOIN brings columns from 2 different tables into a

combined table
• The combined table can have more or fewer records than

its parent tables depending on both the relationship
between records on the parent tables and the type of
join performed

• A UNION appends records from 2 tables into a combined

table
• The combined table will have more records than its

parent tables assuming no filtering is applied to either
table

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A2 Ripken
A3 Johnson

ID First Name Last Name

A1 John Smith

A2 Samantha Ripken

A3 Paul Johnson

ID First Name Last Name

A1 John Smith

A2 Samantha Ripken

ID First Name Last Name

A3 Paul Johnson

A4 Taylor Prince

ID First Name Last Name

A1 John Smith

A2 Samantha Ripken

A3 Paul Johnson

A4 Taylor Prince

INTRODUCTION TO SQL DATA SOCIETY © 2017

A table alias allows a table to be temporarily renamed within the scope of an
individual query. This makes queries easier to read and limits the amount of code
required for a query to execute.

46

Using table aliases

SELECT First.ID, First.[First Name]

,Last.ID , Last.[Last Name]

FROM [First]

JOIN [Last]

ON First.ID = Last.ID

Tables

SELECT A.ID, A.[First Name]

,B.ID , B.[Last Name]

FROM [First] AS A

JOIN [Last] AS B

ON A.ID = B.ID

Code

Vs.

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First
Name

ID Last
Name

A1 John A1 Smith

A3 Paul A3 Johnson

[First] [Last]

Result

INTRODUCTION TO SQL DATA SOCIETY © 2017

The illustration below demonstrates how the JOIN code relates these tables. In more
complex joins, tables are referred to as LEFT and RIGHT tables based on their order in

the SQL statement, which will impact the records returned in result sets.

47

Joins: code structure

SELECT A.*, B.[Last Name]

FROM [First] A

JOIN [Last] B

ON A.ID = B.ID

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name

A1 John Smith

A3 Paul Johnson

[First]

(LEFT TABLE)

[Last]

(LEFT TABLE)

Result

Code

Tables &
Results

The LEFT table
follows FROM

The RIGHT table
follows JOIN

A B

INTRODUCTION TO SQL DATA SOCIETY © 2017

An INNER JOIN between 2 tables returns the intersection between those 2 tables

48

Joins: INNER JOIN

A B

A B

ConnectionSELECT A.*, B.[Last Name]

FROM [First] A

JOIN [Last] B

ON A.ID = B.ID

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name

A1 John Smith

A3 Paul Johnson

[First] [Last]

Result

Tables Code Logic

SELECT A.*, B.[Last Name]

FROM [First] A

INNER JOIN [Last] B

ON A.ID = B.ID

or

INTRODUCTION TO SQL DATA SOCIETY © 2017

A LEFT OUTER JOIN between 2 tables returns all records from the table in the initial

table and the intersection between those 2 tables. Where there is no intersection NULL
values are populated in columns selected from the joined table.

49

Joins: LEFT OUTER JOIN

A B

A B

ConnectionSELECT A.*, B.[Last Name]

FROM [First] A

LEFT JOIN [Last] B

ON A.ID = B.ID

Code Logic

SELECT A.*, B.[Last Name]

FROM [First] A

LEFT OUTER JOIN [Last] B

ON A.ID = B.ID

or

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name

A1 John Smith

A2 Samantha NULL
A3 Paul Johnson

[First] [Last]

Result

Tables

A NULL

INTRODUCTION TO SQL DATA SOCIETY © 2017

A LEFT OUTER JOIN with exclusion between 2 tables returns only records from the

original table with no intersection to the initial table.

50

Joins: LEFT OUTER JOIN (exclude)

A B

ConnectionSELECT A.*, B.[Last Name]

FROM [First] A

LEFT JOIN [Last] B

ON A.ID = B.ID

WHERE B.ID IS NULL

Code Logic

SELECT A.*, B.[Last Name]

FROM [First] A

LEFT OUTER JOIN [Last] B

ON A.ID = B.ID

WHERE B.ID IS NULL

or

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name

A2 Samantha NULL

[First] [Last]

Result

Tables

A NULL

INTRODUCTION TO SQL DATA SOCIETY © 2017

A RIGHT OUTER JOIN between 2 tables returns all records from the joined table and

the intersection between those 2 tables. Where there is no intersection NULL values are
populated in columns selected from the table in the initial table.

51

Joins: RIGHT OUTER JOIN

A B

A B

ConnectionSELECT B.ID, A.[First Name]

, B.[Last Name]]

FROM [First] A

RIGHT JOIN [Last] B

ON A.ID = B.ID

Code Logic

SELECT B.ID, A.[First Name]

, B.[Last Name]

FROM [First] A

RIGHT OUTER JOIN [Last] B

ON A.ID = B.ID

or

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name

A1 John Smith

A3 Paul Johnson

A4 NULL Adler

[First] [Last]

Result

Tables

NULL B

INTRODUCTION TO SQL DATA SOCIETY © 2017

A RIGHT OUTER JOIN with exclusion between 2 tables returns only records from the
joined table with no intersection to the initial table.

52

Joins: RIGHT OUTER JOIN (exclude)

A B

Connection
SELECT B.ID, A.[First Name]

, B.[Last Name]

FROM [First] A

RIGHT JOIN [Last] B

ON A.ID = B.ID

WHERE A.ID IS NULL

Code Logic
SELECT B.ID, A.[First Name]

, B.[Last Name]

FROM [First] A

RIGHT OUTER JOIN [Last] B

ON A.ID = B.ID

WHERE A.ID IS NULL

or

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name

A4 NULL Adler

[First] [Last]

Result

Tables

NULL B

INTRODUCTION TO SQL DATA SOCIETY © 2017

A FULL OUTER JOIN between 2 tables returns all records from both tables including
their intersection.

53

Joins: FULL OUTER JOIN

A B

Connection

Code Logic

SELECT CASE WHEN A.ID IS NULL

THEN B.ID

ELSE A.ID

END as ID

FROM [First] A

FULL OUTER JOIN [Last] B

ON A.ID = B.ID

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name

A1 John Smith

A2 Samantha NULL
A3 Paul Johnson

A4 NULL Adler

[First] [Last]

Result

Tables

NULL B

A NULL
A B

INTRODUCTION TO SQL DATA SOCIETY © 2017

A FULL OUTER JOIN with exclusion between 2 tables returns only records from both
tables excluding their intersection.

54

Joins: FULL OUTER JOIN (exclude)

A B

Connection

Code Logic

SELECT CASE WHEN A.ID IS NULL

THEN B.ID

ELSE A.ID

END as ID

, A.[First Name] , B.[Last Name]

FROM [First] A

FULL OUTER JOIN [Last] B

ON A.ID = B.ID

WHERE A.ID is NULL

OR B.ID IS NULL

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name

A2 Samantha NULL
A4 NULL Adler

[First] [Last]

Result

Tables

NULL B
A NULL

INTRODUCTION TO SQL DATA SOCIETY © 2017

A CROSS JOIN between 2 tables returns every combination of records from one table
to the other.

55

Joins: CROSS JOIN

B

Connection

Code Logic

SELECT CASE WHEN A.ID IS NULL

THEN B.ID

ELSE A.ID

SELECT A.[First Name]

, B.[Last Name]

FROM [First] A

CROSS JOIN [Last] B
First Name Last Name

John Smith
Samantha Smith
Paul Smith
John Johnson
Samantha Johnson
Paul Johnson
John Adler
Samantha Adler
Paul Adler

Result

Tables

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

[First] [Last]

A

A1
A2

A3

B1
B2

B3

INTRODUCTION TO SQL DATA SOCIETY © 2017 56

Joining logic comparison

A B A B A B A B

Outer JoinsInner Joins
Inner Join Left Outer Join Right Outer Join Full Outer Join

Cross Join Left Outer Join

(w/ Exclusion)

Right Outer Join

(w/ Exclusion)

Full Outer Join

(w/ Exclusion)

A B A BA B

A B

A1

A2

A3

B1

B2

B3

A B

A NULL

A NULL

A B

BNULL

BNULL

A B

BNULL

A NULL

BNULL

A NULL

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Unions allow records from the same fields to be appended to one another

57

Union statements

Code

SELECT Date, Revenue

FROM Dec_01_Sales
UNION ALL

SELECT Date, Revenue

FROM Jan_02_Sales

Date Revenue

12/10/01 $25,000

12/19/01 $120,000

12/23/01 $10,000

Date Revenue

01/10/02 $35,000

01/19/02 $12,000

01/23/02 $110,000

Date Revenue

12/10/01 $25,000

12/19/01 $120,000

12/23/01 $10,000

01/10/01 $35,000

01/19/01 $12,000

01/23/01 $110,000

[Dec_01_Sales] [Jan_02_Sales]

Tables

Result

SELECT Date, Revenue

FROM Dec_01_Sales
UNION

SELECT Date, Revenue

FROM Jan_02_Sales

or

INTRODUCTION TO SQL DATA SOCIETY © 2017

Using only UNION to combine tables will remove duplicate records between and within
tables, whereas using UNION ALL will combine all records with no further alterations.
Using UNION ALL typically runs significantly faster than a UNION unless the dataset is
small and removing duplicates is necessary.

58

UNION vs UNION ALL

Date Revenue

12/10/01 $25,000

12/19/01 $120,000

12/19/01 $120,000

12/19/01 $120,000

12/23/01 $10,000

Date Revenue

01/10/02 $35,000

12/23/01 $10,000

01/19/02 $12,000

01/23/02 $110,000

Date Revenue

12/10/01 $25,000

12/19/01 $120,000

12/23/01 $10,000

01/10/01 $35,000

01/19/01 $12,000

01/23/01 $110,000

[Dec_01_Sales] [Jan_02_Sales]

Result

UNION UNION ALL

Date Revenue

12/10/01 $25,000

12/19/01 $120,000

12/19/01 $120,000

12/19/01 $120,000

12/23/01 $10,000

Date Revenue

01/10/02 $35,000

12/23/01 $10,000

01/19/02 $12,000

01/23/02 $110,000

Date Revenue

12/10/01 $25,000

12/19/01 $120,000

12/19/01 $120,000

12/19/01 $120,000

12/23/01 $10,000

01/10/01 $35,000

12/23/01 $10,000

01/19/01 $12,000

01/23/01 $110,000

[Dec_01_Sales] [Jan_02_Sales]

Result

INTRODUCTION TO SQL DATA SOCIETY © 2017

The previous examples use tables with one-to-one relationships; however,
additional considerations should be taken when other table relationships exist.
These relationships include:

59

Table relationships

• One-to-One - each record in one table will have no more than one
matching record in a second table, and vice versa.

• One-to-Many - each record in one table can have many matching
records in a second table; however, each record in the second table can
only have one matching record in the first table.

• Many-to-Many – records in one table can have many matching records
in a second table, and vice versa.

INTRODUCTION TO SQL DATA SOCIETY © 2017

One-to-Many relationships exist when each records in one table may relate to
numerous records in another table.

60

One-to-Many relationships

Account Total Charge

A153 $25

B634 $125

B754 $12

Account Items Purchased

A153 Pizza

A153 Bread

B634 Gift Card

B754 Soda

B754 Sports Drink

[Charges] [Items Purchased]One to Many

INTRODUCTION TO SQL DATA SOCIETY © 2017

Many-to-Many relationships exist when records in one table can have many
matching records in a second table, and vice versa.

61

Many-to-Many relationships

Car Feature ID

Sedan 1

Sedan 2

Pickup 2

Pickup 3

Pickup 4

Minivan 1

Minivan 5

Feature ID Feature

1 Sun roof

2 Manual

3 Run Flat tires

4 4 Wheel Drive

5 ABS

[Feature Mapping]

[Features][Car Inventory]

Car Price

Sedan $25,000

Pickup $35,000

Minivan $29,000

1 to Many Many to 1

Many to Many

INTRODUCTION TO SQL DATA SOCIETY © 2017

• A JOIN statement is limited to two combining 2 tables, but a query can have
multiple JOIN statements. Not all tables have to return a value. The order of

table joins is important (see ordering example on the next slide).

62

Multiple JOIN statements

Code

SELECT A.[ID],

,B.[First Name]

,C.[Last Name]

,A.[Phone]

FROM PhoneNo A
LEFT JOIN [First] B

ON A.ID = B.ID

LEFT JOIN [Last] C

ON A.ID = C.ID

ID First Name Last Name Phone
A1 John Smith 555-111-4564
A2 Samantha NULL 555-222-6781
A3 Paul Johnson 555-333-9754
A4 NULL Adler 555-444-3456

Tables

Result

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

[First] [Last]

ID Phone
A1 555-111-4564
A2 555-222-6781
A3 555-333-9754
A4 555-444-3456

[PhoneNo]

INTRODUCTION TO SQL DATA SOCIETY © 2017

The order of joins will dictate what information is produced in the results. Understanding
the relationships (or lack thereof) between data in tables becomes very important as
tables are combined.

63

Multiple JOIN statements: joins order

InvoiceNo

PhoneNo

ClientNames

ID Client

1 XYZ

2 ABD

5 MYR

Client PhoneNo

XYZ 555-567-5585

ABD 555-675-1900

QAR 555-111-1801

ID Invoice

1 H123

4 B346

5 MZ905

Tables Code
SELECT A.Client, B.Invoice, C.PhoneNo

FROM ClientNames A
LEFT JOIN InvoiceNo B

ON A.ID = B.ID

LEFT JOIN PhoneNo C

ON A.Client = C.Client

Results

SELECT B.Client, A.Invoice, C.PhoneNo

FROM InvoiceNo A
LEFT JOIN ClientNames B

ON A.ID = B.ID

LEFT JOIN PhoneNo C

ON B.Client = C.Client

VS

Client Invoice PhoneNo
XYZ H123 555-567-5585
ABD NULL 555-675-1900
MYR MZ905 NULL

Client Invoice PhoneNo
XYZ H123 555-567-5585

NULL B346 NULL
MYR MZ905 NULL

VS

INTRODUCTION TO SQL DATA SOCIETY © 2017

Tables Code Results

Joins can use more than 1 criteria as well as multiple fields to combine data from
tables. The join logic can also use static values.

64

Multi criteria joins

City State Data Scientists
Springfield Missouri 13
Springfield Virginia 100

Vienna Virginia 75
Springfield New York 25
New York New York 450

City State Data Scientist
Demand

Springfield Missouri 25
Springfield Virginia 75

Vienna Virginia 50
Springfield New York 20
New York New York 500

DS_Supply

DS_Demand

City State Data
Scientists

Data
Scientist
Demand

Demand
Filled %

Springfield Missouri 13 NULL NULL
Springfield Virginia 100 NULL NULL

Vienna Virginia 75 NULL NULL
Springfield New York 25 20 125%
New York New York 450 500 90%

SELECT A.City, A.State

, A.[Data Scientists]

, B.[Data Scientist

Demand]

, 1.00 * A.[Data

Scientists] / B.[Data

Scientist Demand] as 'Demand

Filled %'

FROM DS_Supply A

LEFT JOIN DS_Demand B

ON A.City = B.City

AND A.State = B.State

AND A.State = 'New York'

INTRODUCTION TO SQL DATA SOCIETY © 2017

Excerpts

ArticlePages

Article Beginning Page Ending Page

Golf 1 5

Philosophy 6 10

Science 11 25

Page Text

4 Tiger won again

8 I think therefore I am

22 The chemical is inert

Tables Code

SELECT A.Article, B.Text

FROM ArticlePages A
LEFT JOIN Excerpts B

ON A.[Beginning Page] <= B.Page

AND A.[Ending Page] >= B.Page

Results

Article Text
Golf Tiger won again
Philosophy I think therefore I am
Science The chemical is inert

Earlier examples illustrate equivalent joins (Value 1 = Value 2), but joins can also
use non equivalent logic using operators such as >, <, >=, and <=.

65

Non-equivalent joins

INTRODUCTION TO SQL DATA SOCIETY © 2017

Tables Code Results

SQL also allows a table to be joined to itself. This can be useful in situations such
as creating cumulative sums over time.

66

Self joins

Period Revenue Profit

1 $ 10,000 $ -500

2 $ 12,000 $ -1,000

3 $ 11,500 $ 200

4 $ 13,000 $ 250

5 $ 17,500 $ 400

6 $ 14,000 $ 500

7 $ 9,000 $ -100

8 $ 20,500 $ 1,000

9 $ 12,000 $ 1,200

10 $ 15,000 $ 800

11 $ 19,000 $ 950

12 $ 21,000 $ 1,250

Financials

SELECT A.Period

, SUM(B.Revenue) as Cumulative_Revenue

, SUM(B.Profit) as Cumulative_Profit

FROM #Financials A

JOIN #Financials B

ON A.Period >= B.Period

GROUP BY A.Period

Period Cumulative
Revenue

Cumulative
Profit

1 $ 10,000 $ -500
2 $ 22,000 $ -1,500
3 $ 33,500 $ -1,300
4 $ 46,500 $ -1,050
5 $ 64,000 $ -650
6 $ 78,000 $ -150
7 $ 87,000 $ -250
8 $ 107,500 $ 750
9 $ 119,500 $ 1,950

10 $ 134,500 $ 2,750
11 $ 153,500 $ 3,700
12 $ 174,500 $ 4,950

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Pay attention to the row counts!

– Is the number of rows what you expect?

• A common problem is assuming that a field or combination of fields represents a unique value. When
that is not the case you can see an increase in record count.

• Another common issue is incorrectly setting criteria of a join or WHERE clause and excluding more
records than was originally intended.

– Use simple queries on each original table to compare the number of records with given
criteria to the number in the joined table.

– It is also helpful to use left and right joins Use LEFT and/or RIGHT joins to determine the
overlap between tables and whether:

• The fields you are using to link the original tables are appropriate.

• The tables themselves are appropriate to combine for an analysis (2 tables can appear to be similar
data from field names but actually contain little to no overlap).

67

Quality control tips for joins

INTRODUCTION TO SQL DATA SOCIETY © 2017

SELECT *

FROM First_Last

CREATE VIEW First_Last AS

SELECT A.*, B.[Last Name]

FROM First A

JOIN Last B

ON A.ID = B.ID

A SQL view is a virtual table that is the stored results of an underlying SQL statement. That SQL
statement can be a table or query. Views can be valuable for:
1. Creating simplicity by hiding complex queries from end users of data
2. Creating security through hiding fields with private information and/or preventing changes to base

tables
3. Preventing redundancy & increase consistency by providing a common source for data users

68

SQL views

ID First Name

A1 John

A2 Samantha

A3 Paul

ID Last Name
A1 Smith
A3 Johnson
A4 Adler

ID First Name Last Name

A1 John Smith

A3 Paul Johnson

[First] [Last] Initial Result

INSERT INTO First

SELECT 'A4', 'Jeremy'

INSERT INTO Last

SELECT 'A2', 'Satatoga'

SELECT *

FROM First_Last

ID First Name Last Name

A1 John Smith

A2 Samantha Saratoga

A3 Paul Johnson

A4 Jeremy Adler

Post Insert Result

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Practice writing JOIN statements

• Remember to use proper formatting and appropriate comments

69

Exercise 6 - practice JOINs

INTRODUCTION TO SQL DATA SOCIETY © 2017 70

Questions?

INTRODUCTION TO SQL DATA SOCIETY © 2017

1. Overview of SQL

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

71

Outline

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Understand logical operators in SQL and how they are used

• Understand the use and syntax of various functions

72

Objectives

INTRODUCTION TO SQL DATA SOCIETY © 2017

Logical operators test whether or not a condition is true. They are generally used
in CASE Statements, JOINs, WHERE clauses, HAVING clauses.

Comparison Operators:

– “=“ and “<>” / “!=” – “Equal to” and “Not Equal to”

– “<” and “<=” / “!>” - “Less than” and “Less than or equal to”

– “>” and “>=” / “!<” - “Greater than” and “Greater than or equal to”

– IN - used to match values in a field to a list of values

– BETWEEN - used to specify an inclusive range (lower and upper values are searched as

well as the values in between)

– LIKE - used to identify patterns in character fields

– NOT - used to negate conditions

73

Logical operators: comparisons

INTRODUCTION TO SQL DATA SOCIETY © 2017

The IN clause is used to compare a value to a list of possible values.

74

Logical operators: IN

Rainbow
Colors

Order

Red 1

Orange 2

Yellow 3

Green 4

Blue 5

Indigo 6

Violet 7

Favorite
Colors

Blue

Indigo

Orange

Black

Tables

SELECT *

FROM Rainbow
WHERE [Rainbow Colors] IN (SELECT

[Favorite Colors] FROM Favorite)

SELECT *

FROM Rainbow
WHERE [Rainbow Colors] IN(‘Blue’,‘Violet’)

[Rainbow]

[Favorite]

Example 1 - Field to Field comparison

Example 2 - Field to list comparison

Example 3 - CASE statement using IN

SELECT *, CASE WHEN [Rainbow Colors] IN (

SELECT [Favorite Colors] FROM Favorite)

THEN ‘Y’ ELSE ‘N’ END as Fav_Flag

FROM Rainbow

Code Results

Example 1

Example 2

Example 3

Rainbow Colors Order
Orange 2

Blue 5
Indigo 6

Rainbow Colors Order
Blue 5

Violet 7

Rainbow Colors Order Fav_Flag

Red 1 N
Orange 2 Y
Yellow 3 N
Green 4 N
Blue 5 Y

Indigo 6 Y
Violet 7 N

INTRODUCTION TO SQL DATA SOCIETY © 2017

The BETWEEN clause can be used to determine if a value falls between an upper
and lower bound. For SQL, the BETWEEN statement is inclusive of the upper and
lower bounds (i.e. Between is true when [lower bound] <= value <= [upper
bound]).

75

Logical operators: BETWEEN

Date Amount Category

12/1/15 150 C

12/25/15 20 A

1/15/15 35 D

1/31/16 75 B

Tables

SELECT * FROM Sales
WHERE Category BETWEEN ‘B’ AND ‘D’

SELECT * FROM Sales
WHERE Amount BETWEEN 25 AND 75

[Sales]

Example 1 - Text

Example 2 - Numeric

Code Results
Example 1

Example 2

Example 3

Date Amount Category
12/1/2015 150 C
1/15/2016 35 D
1/31/2016 75 B

Example 3 - Dates

SELECT * FROM Sales
WHERE Date BETWEEN ‘2015-12-25’

AND ‘2016-01-20’

Date Amount Category
1/15/2016 35 D
1/31/2016 75 B

Date Amount Category
12/25/2015 20 A
1/15/2016 35 D
1/31/2016 75 B

INTRODUCTION TO SQL DATA SOCIETY © 2017

The LIKE clause matches patterns of text to a character field. It is important to
understand how to leverage special characters (“%” , “_”, “[”, “]”, and “^”) to
accurately match patterns.

– Wildcard - characters that substitute for any other character in a string

• “%” - used to represent 0 or more characters and is typically used before and/or after the part of text
being searched for to look for that text anywhere in the character string

• “_” - used to represent 1 character

– Specified patterns - Brackets “[]” can be used to specify lists or ranges of characters or
numbers that should be represented by a character in a pattern

• Using “^” after the opening bracket changes exclude the characters following it (ex. “[^m]” matches
any letter other than “m”)

– Escape - The special characters listed above (“%” , “_”, “[”, and “]”) need to be treated
differently than others. They either need to be included in brackets or placed after an
escape character

76

Logical operators: LIKE

INTRODUCTION TO SQL DATA SOCIETY © 2017 77

Logical operators: LIKE examples 1

Example 1 - Using '%' wildcard

Example 2 - Using '_' wildcard

Code

Example 3 - Using '[]' searching

Example 4 - Using '[^]' searching

SELECT CASE WHEN 'theatre 7' LIKE '%theat[re][re] [0-9]' THEN 'T' ELSE 'F' END

SELECT CASE WHEN 'theater 2' LIKE '%theat[re][re] [0-9]' THEN 'T' ELSE 'F' END

Example 5 – Using escapes for special characters

SELECT CASE WHEN 'a[-%_' LIKE 'a[[]-[%][_]' THEN 'T' else 'F'

SELECT CASE WHEN 'a[-%_' LIKE 'a\[-\%_' ESCAPE '\' then 'TRUE' else 'FALSE' end

Results
Example 1

Example 2

Example 3

Example 4

Example 5

SELECT CASE WHEN 'fair' LIKE '_air' THEN 'T' ELSE 'F' END

SELECT CASE WHEN 'lair' LIKE '_air' THEN 'T' ELSE 'F' END

SELECT CASE WHEN 'aabbcc' LIKE '%bb%' THEN 'T' ELSE 'F' END

SELECT CASE WHEN 'aabbcc' LIKE '%a%c%' THEN 'T' ELSE 'F' END

SELECT CASE WHEN 'theatre X' LIKE '%theat[re][re] [^0-9]' THEN 'T' ELSE 'F' END

SELECT CASE WHEN 'theater 9' LIKE '%theat[re][re] [^0-9]' THEN 'T' ELSE 'F' END

‘T’

‘T’

‘T’

‘T’

‘T’

‘T’

‘T’

‘F’

‘T’

‘T’

INTRODUCTION TO SQL DATA SOCIETY © 2017 78

Logical operators: LIKE examples 2
Tables

ID Note

1 He doesn’t want to give
a 50% cut

2 Cut that out we need
the code

3 Here is the code
[code:123_tf]

4 How long the code
good for?

5 123-tf won’t be good
for too long

6 I think 124_tf will work
too

[txtLog]
SELECT * FROM txtLog
WHERE Note LIKE ‘%code%’

SELECT * FROM txtLog
WHERE Note LIKE ‘%too’

Example 1 - word anywhere in string

Example 2 - word at end of string

Code

Example 3 - skipping multiple characters

SELECT * FROM txtLog
WHERE Note LIKE ‘%12%tf%’

Example 4 - skipping single characters and brackets

SELECT * FROM txtLog
WHERE Note LIKE ‘%12_[_]tf%’

Example 5 - skipping single characters and caret brackets

SELECT * FROM txtLog
WHERE Note LIKE ‘%12_[^_]tf%’

Results
Example 1

Example 2

Example 3

ID Note
2 Cut that out we need the code
3 Here is the code [code:123_tf]
4 How long the code good for?

ID Note
6 I think 124_tf will work too

ID Note
3 Here is the code [code:123_tf]
5 123-tf won’t be good for too long
6 I think 124_tf will work too

Example 4

ID Note
3 Here is the code [code:123_tf]
6 I think 124_tf will work too

Example 5

ID Note
5123-tf won’t be good for too long

INTRODUCTION TO SQL DATA SOCIETY © 2017

Multiple logical operators can be strung together by relating them with AND or OR

statements.

• AND - used to connect two or more conditions and only returns those rows

meeting all conditions

• OR - used to connect two or more conditions and returns any rows that meet

any of these conditions

79

Multiple logical operators

INTRODUCTION TO SQL DATA SOCIETY © 2017 80

Multiple logical operators examples

ORAND Combined

City State Data Scientists
Springfield Missouri 13
Springfield Virginia 100
Vienna Virginia 75
Springfield New York 25
New York New York 450

DS_Supply

SELECT *

FROM #DS_Supply

WHERE City = ‘Vienna’

AND State = ‘Virginia’

City State Data Scientists
Vienna Virginia 75

SELECT *

FROM #DS_Supply

WHERE City = ‘Vienna’

OR State = ‘Missouri’

City State Data Scientists
Springfield Missouri 13
Vienna Virginia 75

SELECT *

FROM #DS_Supply

WHERE State = ‘New York’

AND [Data Scientists] > 50

OR State = ‘Missouri’

City State Data Scientists
Springfield Missouri 13
New York New York 450

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Functions in SQL Server are stored programs that can be passed parameters
and return a value or values. In SQL most functions are structured to work
within the context of a query.

• SQL has functions that are designed to work with each and/or multiple data
types and also operate either across columns in a single row or across rows in a
single column.

81

Functions

--Aggregating on an entire table

SELECT MIN(Cash_Balance) AS 'MIN', MAX(Cash_Balance) AS 'MAX'

, SUM(Cash_Balance) AS 'SUM', AVG(Cash_Balance) AS 'AVG'

, COUNT(Cash_Balance) AS 'COUNT'

FROM tbl_cash_balances

Code

Results

Parameter

Function

Returned value

INTRODUCTION TO SQL DATA SOCIETY © 2017

Financials

• Cross column functions combine data in the same record from different
columns

• Aggregate functions combine data in multiple rows from the same columns

• The two function types can be used together; however, the syntax needs to be
precise

82

Functions: cross column vs. aggregate

Period Revenue Costs

1 $ 10,000 $ 500

2 $ 12,000 $1,000

3 $ 11,500 $ 200

4 $ 13,000 $ 250

5 $ 17,500 $ 400

6 $ 14,000 $ 500

--Cross Column function: Periodic Profit

SELECT Revenue - Costs AS ‘Profit'

FROM Financials

--Aggregate function

SELECT SUM(Revenue) AS ‘Tot Revenue‘

, SUM(Costs) AS ' Tot Costs'

FROM Financials

--Cross Column: count if Profit > 15k

SELECT SUM(CASE WHEN Revenue - Costs > 15000

THEN 1 ELSE 0 END) AS ‘Periods GT 15K‘

FROM Financials

Profit
$9,500

$11,000
$11,300
$12,750
$17,100
$13,500

Tot Revenue Tot Costs

$ 78,000 $ 2,850

SUM Count

Tot Costs

1

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Cross column functions:

– Numeric data types support all basic math functions such as addition (“+”), subtraction
(“-”), multiplication (“*”), division (“/”), and exponents (“POWER()”)

– Cross-column also includes mathematical expressions such as absolute value (“ABS()”),
rounding (“ROUND()”) and random number generation (“RAND()”)

• Aggregate Functions:

– SQL also supports aggregate math functions such as counts (“COUNT()”), sums (“SUM()”),
maximum values (“MAX()”), and averages (“AVG()”)

83

Functions: math

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Cross-column functions:

– Text data types support a variety of functions to manipulate text strings including:

• Extract part of a string: LEFT(), RIGHT(), SUBSTRING()

• Finding the position of text and length of string: PATINDEX(), CHARINDEX(), LEN()

• Removing spaces from the ends of strings: LTRIM(), RTRIM(), TRIM()

• Combine strings: CONCAT(), “+”

• Aggregate Functions:

– Text data only supports several aggregate functions including counts (“COUNT()”),
maximum alphanumeric values (“MAX()”), and minimum alphanumeric values (“MIN()”)

84

Functions: text

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Cross-column functions:

– Date data types support a variety of functions to manipulate dates including:

• Get current date and/or time: CURRENT_TIMESTAMP, GETDATE(), SYSDATETIME()

• Return date and/or time parts: DAY(), MONTH(), YEAR(), DATENAME(), DATEPART()

• Create date and/or time from parts: DATEFROMPARTS(), TIMEFROMPARTS()

• Date math: DATEDIFF(), DATEADD()

– Date data only supports several aggregate functions including counts (“COUNT()”),
maximum alphanumeric values (“MAX()”), and minimum alphanumeric values (“MIN()”)

• This limitation can be avoided because dates can be converted to a numeric data type for additional
calculations. After calculations (averages, variances, etc.) are performed on a numeric date they can be
converted back knowing that Microsoft's base date (numerically zero) is 1/1/1900.

85

Functions: dates

INTRODUCTION TO SQL DATA SOCIETY © 2017

• There are some useful functions that assist with dealing with incomplete data
sets that contain NULL values:

– ISNULL() - replaces NULL with the specified replacement value

– COALESCE() - returns the first non-null expression among its arguments

86

Functions: NULLs

--Manually substitute for NULL values

SELECT Date, ISNULL(SalesAmt1, 0) AS SalesAmt

FROM tblSales

--Take first non-NULL values

SELECT Date, COALESCE(SalesAmt1, SalesAmt2) AS SalesAmt

FROM tblSales

Date SalesAmt1 SalesAmt2

12/1/15 150 75

12/25/15 NULL 50

1/15/16 35 NULL

1/31/16 NULL 65

Tables

[tblSales]

Code Results

ISNULL
Date SalesAmt

12/1/15 150

12/25/15 0

1/15/15 35

1/31/16 0

COALESCE
Date SalesAmt

12/1/15 150

12/25/15 50

1/15/15 35

1/31/16 65

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Using the tables you imported earlier, practice the syntax for:

– Logical operators

– Cross-column and aggregate functions

• Math

• Text

• Date

87

Exercise 7 - logic & functions

INTRODUCTION TO SQL DATA SOCIETY © 2017 88

Questions?

INTRODUCTION TO SQL DATA SOCIETY © 2017

1. Overview of SQL

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

89

Outline

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Understand common data problems

• Review Quality Control (QC) tips

• Review Organizational tips

• Understand ways to improve performance and efficiency

90

Objectives

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Unreliable or unusable data

– Incomplete data

– Duplicate data

– Inconsistent formats

• Inaccurate interpretations
– What do the values in OFFENSE

and METHOD really mean?

• Join issues
– NULLs not accounted for
– Wrong columns used
– Table relationships not considered

91

common data problems

CCN REPORTEDDATE REPORTEDTIME SHIFT OFFENSE METHOD
13009976 1/23/2013 NULL DAY NULL OTHERS
13009981 1/23/2013 9:46:00 AM DAY MOTOR VEHICLE

THEFT
OTHERS

13009981 1/23/2013 9:46:00 AM DAY MOTOR VEHICLE
THEFT

OTHERS

13009981 1/23/2013 9:46:00 AM DAY MOTOR VEHICLE
THEFT

OTHERS

NULL 13009986 1/23/2013 11:25:00 AM DAY THEFT F/AUTO
NULL 13009987 1/23/2013 12:30:00 PM DAY THEFT/OTHER

13009990 01232013 10:54:00 AM DAY MOTOR VEHICLE
THEFT

OTHERS

13009991 2013-1-23 23:57:00 DAY BURGLARY OTHERS
13009994 2013-1-23 12:13:00 PM DAY THEFT/OTHER KNIFE
13010012 1/23/2013 18:34:00 DAY THEFT F/AUTO OTHERS
13010013 1/23/2013 12:31:00 PM DAY THEFT/OTHER KNIFE
13010014 1/23/2013 12:25:00 PM DAY THEFT/OTHER OTHERS

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Reconcile data source totals
– Compare record counts and sum totals of data sets used to source documents

– Reconcile with other source documents

– Compare detail and summary data sets

– Account for all records

• Perform frequency distributions on the data
– Check for incorrectly excluded or included data

– Check for invalid entries

– Distinguish between NULL and blank fields

92

QC: preventing data problems

The following are quality control (QC) steps to detect and prevent common data
problems:

INTRODUCTION TO SQL DATA SOCIETY © 2017 93

QC: preventing data problems
• Check for reasonableness
– Check that fields provide the correct data for your analysis

– Check that amounts fields are appropriate (i.e. 5000 could be $5,000 or $50 if there is an
implied decimal)

– Ensure that fields are logically related to each other and carefully compare fields for JOINs

– In transactional data check for adjustments/corrections or reverse values that may impact
totals or the meaning of the data

• Lookup table verification
– Determine valid values list for lookup tables

– Compare valid values to data values used

– Identify missing values

• Query result tests
– Evaluate whether or not JOIN results meet expectations

– Verify the type of join used was correct

– Determine if results contained too many or few records

INTRODUCTION TO SQL DATA SOCIETY © 2017 94

QC: building quality into analysis

The diagram below illustrates that quality control (QC) must be built into an
analysis from beginning to end.

Source Data
Tables

Source Data
Tables

Imported
Data Tables

Analysis
Code

Reporting Data
/ Results

Analysis Platform ReportingData Sources

Reconciliations

Analysis Process

Reasonableness Checks

INTRODUCTION TO SQL DATA SOCIETY © 2017

• When importing data into SQL from files or other databases, there is a significant risk
of losing data through conversion errors

• It is a good practice to import a raw table with fields in a text format first, and create a
SQL script to convert the data types in a new table to assist with reconciling to source
data inputs

95

QC: import/export processes

Name Date

Adam 5/15/2016

Beth 2/15/2016

Bell 20160120

Ernest 01202016

Name Date

Adam 5/15/2016 00:00:00

Beth 2/15/2016 00:00:00

Bell NULL

Ernest NULL

Name Date

Adam 5/15/2016 00:00:00

Beth 2/15/2016 00:00:00

Bell NULL

Ernest NULL

Source Data
Tables

Raw TablesRaw TablesRaw Tables
Intermediat

e Tables
Intermediat

e Tables
Formatted

Tables
TransformSQL Import VS. Source Data

Tables
Raw TablesRaw TablesFormatted

Tables

SQL Import &
Transform

Source Data
Tables

Source Data
Tables

Note: Importing and then transforming data
types allows simple reconciliation facilitates
correction of conversion errors

Note: without a complete import there is no
straight forward way to know if NULLs in a data
set are true NULLs or conversion errors

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Code should always be commented to the extent that a non-SQL user can
understand the analysis process, and for SQL users to repeat the process

96

Organization: commenting

• Syntax:

– In-line comments – all text after “--“ will not be read by SQL Server when a query is run

– Block comments - all text between “/*“ and “*/” will not be read by SQL Server when a
query is run

-- Selecting all contract numbers for comparison

SELECT Contract_NO FROM [tbl_DS_Sample]

SELECT Contract_NO

/* These contract numbers represent the population

of non- performing loans */

FROM [tbl_DS_Sample]

INTRODUCTION TO SQL DATA SOCIETY © 2017

Consistent code formatting makes it easier to read and edit. This saves hours of
time spent trying to understand what is happening if the code is reviewed later.
Here are a few suggestions for SQL formatting:

• Put keywords in UPPER CASE
– SELECT, FROM

– SUM, AVG

– CASE, CAST, CONVERT

• Use tabs to align blocks of code

• Put commas at the beginning of a line

97

Organization: formatting

--Create Greater than 2000 flag

SELECT A.Contract_NO

, CASE WHEN Origination_Year > 2000 THEN ‘Y’

ELSE ‘N’ END AS GT_2000_Flag

INTO #TEST

FROM [tbl_DS_Sample] A

LEFT JOIN [tbl_DS_Sample2] B

ON A.Contract_NO = B. Contract_NO

WHERE A.Contract_NO IS NOT NULL

--View records from #Test

SELECT *

FROM #TEST

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Use consistent naming conventions for SQL tables, views, and other objects

• Be consistent when renaming fields within a table/project

– If there are many analyses relying on a field in a table and the name changes, it could
severely interrupt other processes before the proper changes are made across a team or
organization

• Do not use spaces in names

– When spaces are used in a table or column names, it requires brackets (“[Field Name]”)
around the name to be properly read in SQL

98

Organization: naming conventions

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Follow your office or team rules for creating and organizing scripts

• Each script should be modular and relate to one analysis or function

• Version control is also very important and adding version descriptions and dates to
scripts can be very helpful when an analysis needs to be revisited

• For example a project named Surfside may have files saved like:
– Surfside_Data_Prep_v01_20170225.sql = scripts related to preparing a table or data set for

analysis

– Surfside_Review_v01_20170315.sql = scripts such as frequency distributions that describe the
data

– Surfside_Data_Analysis_v01_20170322.sql = scripts related to the project deliverable

99

Organization: saving SQL scripts

INTRODUCTION TO SQL DATA SOCIETY © 2017 100

Performance: argument order

Fastest

Slowest

OR

AND

• Try to use a leading character with LIKE
(ex. LIKE 'm%' instead of LIKE '%m‘)

• Use LIKE instead of SUBSTRING with =

• Be careful with OR
• If multiple ANDs, put least likely condition

first
• If equally likely, put least complex

condition first

<>

LIKE

>,>=,<,<=

=

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Restrict result sets by using WHERE or only selecting the columns needed

• Use WHERE with HAVING when appropriate

• ORDER BY is inefficient; sort results in a separate step

101

Performance: query structure

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Backup your database, but don't store excessive copies of the backup

• Choose between temp tables and views

• Use appropriate field types (avoid using NVARCHAR)

102

Performance: space efficiency

INTRODUCTION TO SQL DATA SOCIETY © 2017 103

Questions?

Appendix:

Bridging data between SQL and R

INTRODUCTION TO SQL DATA SOCIETY © 2017

• R can be used to extract and write data to a SQL database

• This allows analysis results sets and interim data sets to easily accessed from a
central location

105

Bridging R and SQL

Data Storage
& Aggregation Analysis

Source Data
UploadUpload

Export / Import
for Analysis

Export / Import
for Storage

INTRODUCTION TO SQL DATA SOCIETY © 2017

• R can connect to SQL using an Open Database Connectivity (ODBC) connection
– ODBC is a protocol that allows for a connection between data sources such as Microsoft SQL

Server.

• The RODBC package uses the odbcDriverConnect() function to create an ODBC
connection that R can use to query a database

106

ODBC Connection

SQL_Con = odbcDriverConnect(paste('driver={SQL Server}'

,';server=W530THINKPAD\\SQLEXPRESS'

,';database=Data_Society_SQL_CLass'

,';trusted_connection=true', sep = ''))

• driver={SQL Server} indicates that we are
connecting to a MS SQL server

• The server you would like to connect to should be
entered here after "server="

• The database within the server that you would like
to connect to should be entered here after
"database=“

• true indicates that windows authentication will be
used for server access permissions

Data Storage
& Aggregation AnalysisODBC Connection

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Using the ODBC connection and the sqlQuery() function from the RODBC
package, we can execute the SQL command SP_tables which will store a
dataframe containing all SQL tables and views in a database.

107

Create a list of SQL tables

SQL_Table_List = sqlQuery(SQL_Con

,'SP_tables')

• SQL_Con is the ODBC connection previously defined
• SP_tables is a function in SQL server that returns all

database tables and Views (system and otherwise)

SQL_Table_List = SQL_Table_List[SQL_Table_List$TABLE_OWNER != 'sys'

& SQL_Table_List$TABLE_OWNER != 'INFORMATION_SCHEMA',]

Execute and store query

Subset the data set

• Remove System tables and Information schemas
that would not typically be part of your analysis

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Using the ODBC connection and the sqlQuery() function from the RODBC
package, we can execute a SELECT query which will store a dataframe
containing all the results of that query.

108

Import SQL tables (individual)

tblClaims = sqlQuery(SQL_Con, 'select * from tblClaims')

Execute and store SELECT queries

New

Dataframe

Function ODBC

Connection

SQL

Query

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Using a for loop the ODBC connection and the sqlQuery() function from the
RODBC package, we can execute multiple SELECT queries to create
dataframes for all (or a selected list) of tables and views in a database.

109

Import SQL tables (bulk)

for(i in 1:nrow(SQL_Table_List)){

schema = as.character(SQL_Table_List$TABLE_OWNER[i])

tbl_name = as.character(SQL_Table_List$TABLE_NAME [i])

tbl_import_loop = sqlQuery(SQL_Con

, paste('select * from '

, schema

, '.'

, tbl_name

,sep = ''))

assign(paste(schema, '_'

, tbl_name ,sep = '')

,tbl_import_loop)

print(paste(schema, '_', tbl_name ,sep = ''))

}

• get the schema name for each record to
ensure the right object is being selected
from the database

• get the table name for querying each
table in the database for import

• code to import SQL table into R
• code to assign each table imported an

appropriate variable name based on both
the schema and the table name from the
SQL database

• Print tables imported in the console to
track progress while loop runs

Import all tables

INTRODUCTION TO SQL DATA SOCIETY © 2017

• Using the ODBC connection and either the sqlSave() function or the sqlQuery()
function from the RODBC package, we can save a data into a new SQL table or
append the data to an existing data table from R.

110

Export data to SQL

sqlSave(SQL_Con

, tbl_crime_incidents_2013

, tablename = "tbl_crime_incidents_2013_R_export"

, rownames = FALSE

, append = TRUE)

Export dataframe to SQL table
• SQL connection created earlier in the code
• R dataframe being exported
• The name of the table being created and/or

appended to
• excludes rownames from being exported as a

column in the new SQL table
• TRUE - if the table already exists then the records

from this data frame will be appended to the
existing table

Export values to SQL table

DivisionCode = "'C'"

DivisionName = "'Central'"

sqlQuery(SQL_Con

, paste('INSERT INTO tlkpDemosDivisions_R_export

SELECT ',DivisionCode,',',DivisionName, sep = ''))

• Define values
• SQL connection created earlier in the code
• Use INSERT statement with variable values to

append data to a SQL table

INTRODUCTION TO SQL DATA SOCIETY © 2017

• It is a best practice to close an ODBC connection (or connections) after you are
done accessing the databases to help maintain the performance and availability
of your SQL database. We use the functions odbcClose() and odbcCloseAll()
from the RODBC package to close individual or all connections respectively.

111

Close ODBC connections

Close connections

odbcClose(SQL_Con)

odbcCloseAll()

• Close a specific ODBC connection

• Close all ODBC connection

INTRODUCTION TO SQL DATA SOCIETY © 2017 112

Questions?

