DATA SOCIETY"

The premiere data science training for professionals

‘One should look for what is and not what he thinks should be.”
- Albert Einstein

INTRODUCTION TO SQ.L DATA SOCIETY © 2017/

Welcome to Intro to SQL

» Please confirm that the following technology Is working properly:

1. Confirm that you have SQL Server software installed correctly

2. Save the following files to your desktop for this section

(files previously sent to you from Data Society)

— Claims.txt

— crime_incidents 2013 data.csv

— crime_incidents 2013 location.csv
— Divisions.txt

— Franchises.txt

— JTeams.txt

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Outline

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Objectives

1. Develop a basic understanding of relational databases and SQL

2. Setting up Management Studio and importing data

3. Learn foundational SQL query concepts

INTRODUCTION TO SQL DATA SOCIETY © 2017/

What

is SQL?

* SQL Is shor
icate with mos

communica

- for Structu

red Query La

nguage. It Is the standard language used to

c relational da

‘abases

— SQL queries are sent to a database to ask it to perform a specific task with the data it

stores

« Microsoft SQL Server is a type of relational database

INTRODUCTION TO SQL

% VS Excel

Microsoft®

SOL server

Microsoft ®

Access

DATA SOCIETY © 2017/

Goals for Intro to SQL

» Learn to Import/Export, manipulate, combine, and aggregate data sets using
SQL Management Studio

* These lessons are structured with the intent of using SQL server as an
iIntermediary to store and aggregate data as displayed in the image below

Export / Import

Data Storage for Storage Analvet
& Aggregation Export / Import > nalysis
for Analysis

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Why use SQL?

Great Average Limited

Excel

Data Size Limits

Manipulating
Data

Analyzing /
Reporting Data

Speed

Compatibility

Quality Control

Learning Curve

SQL

Best option for analyzing large data sets (over
1 million records)

Multiple queries can easily be combined to
coerce data from multiple data sets

Limited built-in analysis functions and lack of
built-in reporting and visualization
capabilities

Faster Processing

Compatible with most visualization, business
intelligence, and statistical analysis platforms

SQL Queries create repeatable and auditable
analysis processes that can be clearly
commented

Can be easy to learn for people without a
programming background

INTRODUCTION TO SQL

Access

Handles larger data sets than Excel, but can
be limited by memory and space of local
computers

Querying capabilities similar to SQL with less
flexibility and capabilities

Built in form and report capabilities for easy
reporting, but more limited set of analysis
functions

Slower processing

Compatible with many visualization, business
intelligence, and statistical analysis platforms

Access Queries also create repeatable
processes, but are often less transparent than
SQL queries

Can be easy to learn for people without a
programming background

DATA SOCIETY © 2017/

Limited to 1,048,576 records for data sets

Combining data sets can be difficult and
prone to manual and formula errors

Many built in analysis functions,
visualizations, and formatting for easy
modeling and reporting

Slower Processing

Compatible with most visualization, business
intelligence, and statistical analysis platforms

Excel Analyses are harder to replicate due to
manual steps that can be difficult to audit

Easy to learn for any analyst

Intro to relational databases

* \What Is a relational database?

— Relational databases store data in the form of tables that can be related to one another
nased on common attributes in the columns and rows of those tables

— SQL Queries can leverage these relationships to rearrange the data stored in database
tables

Analysis

Business
« Business Name

* |ndustry

« Contact Name
 Phone Number
« Account Balance

e Contact ID Business |ID

« Contact Name Accounts e |ndustry
« SSN Business Name

e Phone Number * Contact ID
e Business ID

o Account Number
« Account Balance

INTRODUCTION TO sQL DATA SOCIETY © 2017

SQL Server general functionality

INTRODUCTION TO SQL

» SQL Server Management Studio Is an environment used by analysts to access the

capablilities of SQL Server:
— Import/Store/Export data

— Execute queries
« Combine existing data
» Update existing data
» Extract, summarize, and/or aggregate data

» Perform calculations on existing data
» Create and delete data tables

— Administrative functions
» Database security and access control

K.
I|l|l|l\.

Fle Edit View Query Project Debug Tools Window Help
1T T e | NewQuery iy ey (| 6 o @9 - - S5 g b
-|| ¥ Execute b Debug ® v 3) a3l |37y |8 Y| = 2 | EEE| AL

i 90 127 | | master

Connect~ % %) m [3] .5 1 SELECT * FROM TEST Query

= La DATASOCIETYSERVERO01 (SQL Server 12.3.6234 — DS\JDOE)
= _ Databases
[System Databases

[Database Snapshots
i+ | | DATABASE_01
) | | DATABASE_02
+ | | DATABASE_01
& [Security
@ [Server Objects
[Replication
@ [AlwaysOn High Availability

[Management
@ [Integration Services Catalogs
15 SQL Server Agent (Agent XPs disabled)

*Screen Shot from SQL Server Management Studio

DATA SOCIETY © 2017/

SQL Server general components

SQL Sever Management Studio

File Edit View Query Project Debug Tools Window Help
Pl T | A NewQuery [y G| 4 a @9 - - Q-5 g b
: 37 g | master /| ¥ Execute b Debug ® v 37 =3/ |7 Uy 38NN 2|

Object Explorer Ml SOLQuery1.5ql - DAT...S\JDOE(102)

Connect> ¥/ 3J m [2] .5 1 SELECT * FROM TEST Query

- |{$ DATASOCIETYSERVER01 (SQL Server 12.3.6234 — DS\UDOE)
= | Databases

\ # [System Databases

O D a ta b a S e S & [Database Snapshots

+ | | DATABASE_01

. Q:B |

ni
"l
nv
[

X

* Servers

. » DATABASE_01
[T ——, o s u — -
1 GSIRMEIN Schdle 58 nvormetaSeries_ INPTROWIH 1 v 0 = -
T D T T e Database Diagrams
3 d1 GORUSIN Schdie 08 Eniemerd S NPTRDNIS 1 e 0
o de q Cotethmber CotacingTee Task / Debvey Oce b Modfcaon Nonber Transecion Sgne Dete Transacin Vae — T bl
43 1 GO et et DPIEDIS 1 1R] o E] l_J aples
o ode do SN St EvmetiSaios NI 5 s 0 —
(5 d3 GSRMSIN Schedie s Envometa Savess INLISPDUES s B5 ‘ System Tables
g5 ¢ GBI et nmetd e LCPOUEN 1 8205 T
o f7 o5 SN et EvmertSeis DU 0 §1ats ™ — - Fl T bl
15 5 GSUFMSI chedle S Eniumera Svess IO 2 s] [_J Helapies
g |7 Mo - : 0 s un) .
s wewmn - ; 0 i m . db b D S ty S
g — » 1 dbo.tbl_Data_Society Stats

* Server - database servers are programs that provides database services to other computer programs

- [Database - is a container of data/information organized into tables (and other structures) so that they can be easily managed and accessed back in
same fashion.

 [able - data stored in a tabular format with rows of named columns

« SOL Server Management Studio = An application used to configure, manage, and administer components of SQL server (i.e. the user interface for
accessing servers, databases, and tables to launch commands to the server)

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Exercise 1 - connect to SQL

» In this activity we will @connect to a SQL Server, @ create a new database,
€ open a new query window, and @ select a SQL database to query from

Getting Started

0

T.

= Explm;_; ay ¥ 73 File Edit View Query Project Debug Tools Window Help

Connect = 4 m (] & 5 g
’ P v) 5l o | L NewQuery 3 0D 5| % a9 -
: = L.ﬂ WEIDTHIMKPADNSQLEXPRESS (SQL Server 12.0.2000 - . J _ ‘ ;l I;Ji lﬁ 'i‘ ||)eb - | -
»S LS E‘qm--l.l.l.l-l.l.ln " e = v 5/

< erver2012 Em Mew Database... m Object Explorer
z n
E Attach... Connect> % %) m [2] .45

= [b DATASOCIETYSERVERO1 (SQL Server 12.3.6234 - DS\UDOE)

= L_b DATASOCIETYSERVERO1 (SQL Server 12.3.6234 - DS\JDOE)
= 1 Databases

Restore Database...

Database Engine

= [Databases

Restore Files and Filegroups... -
#&m&m&m&mﬂﬂm‘w @ LJ System Databases _
"IDATASOCIETYSERVERO1 _ — @ [Database Snapshots @ [System Databases
oy Deploy Data-tier Application... ; J DATABASE_01 @ [Database Snapshots
Import Data-tier Application... ; T DATABASE:02 + | | DATABASE 01
| | DATABASE_01 & | | DATABASE_02
Start PowerShell) ; Secunhly e 5 | | DATABASE 01
nd) o)
Reports * @ [Server Objects @ [Security
Refresh @ [Replication # [Server Objects
i Wi @ [AlwaysOn High Availability @ (3 Replication o
| | ReportServerSSQLEXPRESSTempDE @ (3 Management & [AlwaysOn High Availability
[LJ Security @ [Integration Services Catalogs # [Management

[Server Objects £ SQL Server Agent (Agent XPs disabled) @ [Integration Services Catalogs
[J Replication 1) SQL Server Agent (Agent XPs disabled)

[3 Managerment

» Connect to the “YXXXXXXX’ » Create adatabase and call it~ * Create a new 5QL script by clicking » Select the database for the SQL
Server created on your "Data_Society_SQL_Class” on "New Query in the toolbar script to refer to by selecting

computer when SQL Express “Data Society SQL Class” in the
was installed dropdown menu

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 10

Data loading

* There are 3 methods for importing data into SQL server.
using the Import/Export Wizard;

other methods:

Import/Export Wizard

Description Gives users a point and click interface
to upload tables into SQL server while
using Management Studio

Advantages « FEasy user interface
* Best use is for small tables with little
chance of import error:
- Basic look up table containing a
value and description
- Sample data sets

Drawbacks (Can alter data to fit into a defined
table rather than resulting in an error

INTRODUCTION TO SQL

Bulk Inserts

Handles larger data sets than Excel, but
can be limited by memory local
computers

 C(Creates arepeatable audit trall
 Does not manipulate data to allow
import to succeed

 More difficult to set up and execute
- relationship between the syntax,
format files and data files can be

hard to work with

DATA SOCIETY © 2017/

‘his class will focus on
nowever, It Is Important to understand the

SQL Server Integration
Services (SSIS)

Uses Microsoft Visual Studio to create a
process flow for importing and
transforming tables

Creates a repeatable audit trail
Dynamically import multiple files
mport similar files using loops
Perform additional transformations
and queries before and after table
Imports

Requires learning Microsoft Visual
Studio

More difficult to set up and has
some situations requiring new syntax

11

Exercise 2a - loading data

» Uploading

Ciles using the Import/

-xport Wizard

— Upload 3 files using Import/Export Wizard following the directions in the SQL script
accompanying these slides

o Claims.txt

* crime incidents 2013 data.csv

* crime incidents 2013 location.csv

Object Explorer = I > § 2a) Overview of 5Q...hinkpad\W530 (53))
Connect~ 3¢ 3d m “F E ; --

= [BWSBUTHINKPAD\SQLEKPRESS (SOL Server 12.0.2000 - W5301 --data has to be on same

= [Databases = Bulk :}ns\er‘t tbiLIDemo\sTeams

[System Databases From 'C:‘\Users‘wWs3@ \Deskilz

- --(988 row(s) affected)
--The conscle messagg

5 l-l e———— SOL CL With (Fieldterminator =
ata Socie Lass
[

MNew Database...
[Mew Query

Script Database as 3 oL
--5tep 3: Create Division

Tasks r Detach...]
Policies r Take Offline
Facets Bring Online Hpn
arch
Start PowerShell Shrink y arch
[
0 Reports » Back Up...
g Rename Restore v
[
| Delete Generate Scripts... pme
Emo
! Refresh Extract Data-tier Application... Bkt
] = !
:' Properties Deploy Database to a Windows Azure VM. =
F | -
E@ Security Export Data-tier Application... -
[Server Objects Register as Data-tier Application...
1 Replication Upgrade Data-tier Application...
(4 Management Delete Data-tier Application...
Import Data... I}
Export Data...
| |

Open Import/Export Wizara

INTRODUCTION TO SQL

¥ . - -
L SQL Server Import and Export Wizard . I P - E@g

Welcometo SQL Serverimportand
o Export Wizard

This wizard helps you to create simple packages that import and
export data between many popular data formats including databases,
spreadsheets, and text files. The wizard can also create the
destination database and the tables into which the data is inserted.

]
. To move or copy databases and their objects from one server i
instance to another, cancel this wizard and use the Copy Database
‘wizard instead. The Copy Database Wizard is available in QL
' Server Management Studio.
| |
1
| |
i |
|
|

™ Do not show this starting page again.

Help ‘ Mext = | Cancel |

N

Follow Import Steps

DATA SOCIETY © 2017/

12

Exercise 2b - loading data

 Use code t

O create and import table using bulk insert

— Create a table and import the following text files into SQL Server using the SQL script
accompanying these slides

* Franchises.txt

 Jeams.txt

* Divisions.txt

INTRODUCTION TO SQL

--5Step 1: Create Franchises Table

USE [Data_ Society SQL Class]

@0

CREATE TABLE Data Society SQL Class.[dbo].[tblDemosFranchises]|
[FranchID] [char](3) COLLATE SQL_Latinl General CP1 CI AS NULL,
[FranchName] [wvarchar](5@) COLLATE SQL Latinl General CP1 CI AS NULL,
[Active] [varchar](4) COLLATE SQL_Latinl General CP1 CI AS NULL

) ON [PRIMARY]

@0

--data has to be on same server copy to it first
Bulk insert dbo.tblDemcsFranchises
From 'C:\Users\W538\Desktop\SQL Class\2a) Activity Files\Franchises.txt'
With (Fieldterminator = '|")
--(128 row(s) affected)
--The console message should reflect 128 records affected if this is performed successfully

G0

DATA SOCIETY © 2017/

13

Post import data treatment

» Often tables imported into SQL are not ready for analysis
* WWhen preparing for an analysis think of three types of tables:
— Raw - freshly imported into the SQL environment

— Intermediate - mirror of raw tables with fields transformed into usable data types
» Ex: dates might be imported as text and require transformation into a date format for analysis

— Analysis - tables with the fields required for an analysis

Database
Source Data I Raw Tables) Intermediate) Analysis
Tables _I— Tables Tables
g
___/

“Note: it is a best practice to name tables to distinguish these table types (Ex. tbl Raw Procurement_Data 2016)
« This will be covered further in the Best Practices section

INTRODUCTION TO SQL DATA SOCIETY © 2017/

14

Query examples and explanation

* SQL Queries follow a standard order of statements that must
be followed In each query for SQL server to understand a query

— Not all statements are required for every query, but the same order of
commands must be maintainec

1] S"_I-TIT-CT 50LCueryl.5gl - not connected™ X
1 SELECT Contract NO
2 __NTO 2 FROM [tbl D5 Sample]
o L 3
A SQLCuery1.5gl - Us..5\mfergusson (33]))" X
3. FROM 1 EISELECT Contract NO
> | FRoM [tb1 DS Sample]
— 3 |WHERE Contract NO like '%12345F%'
4 . WHL R."_n SDLE!uerjﬂ sql - US...5\mfergusson (33))* 4 | ORDER BY Contract NO
1 [EISELECT Contract NO :
5. GROUP BY 2 | FROM [tbl DS Sample]
3 |WHERE Contract NO like '¥12345F%'
6 — GROUP BY Contract NO

. HAVING S | HAVING Contract NO = '12345F'
6

ORDER BY Contract N0

/. ORDER BY

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Query examples and explanation

1. SELECT - defines the fields that will be included in the new
table requested by a query from other tables and from functions

2. INTO - declares that a query will create a new table in the

SELECT Contract NO
, Busilness ID

, Sale Amount | database
, (*) as ‘Row Count’ 3. FROM - defines the existing tables that a query will draw data
INTO tbl DS Contract Counts from

FROM tbl DS Sample

WHERE Contract NO like ‘3123%’ 4. WHERE - filters the query results based on criteria from the

GROUP BY Contract NO original tables

, Business ID 5. GROUP BY - aggregates query results to include distinct values
, Sale Amount of the selected fields

HAVING (*)>1

6. HAVING - Similar to WHERE, except can contain aggregate
functions. HAVING clauses can reference any of the items that

appear in the select list

7. ORDER BY - sorts the query results in order by the indicated
fields

ORDER BY Contract NO
, Sale Amount

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Querying basics: SELECT & FROM

* The basic component of a SQL g

uery 1s the SELECT statement which can be

used to:

1. Return text
/. Return the results of basic math o

- other operations

3. Returns 1 or more fields from a ta

ble In the FROM clause

SELECT STAR - Return /93 records from all SELECT Columns - Returns /93 records of

columns

SELECT *
FROM tblClaims

specified columns

SELECT ClaimID, MemberID
FROM tblClaims

SELECT TOP X - Returns the first X Records SELECT DISTINCT - Returns 11 unique records

from columns selected

SELECT TOP 20 *
FROM tblClaims

INTRODUCTION TO SQL

(no duplicates) across the columns selected

SELECT DISTINCT Gender
, ProviderType
FROM tblClaims

DATA SOCIETY © 2017/

17

Querying basics: WHERE

* [The WHERE clause Is used to filter records from a table based on logical criteria
defined in the WHERE clause

— Logical operators will be discussed in more detail later, but this includes equality, ranges,
and pattern matching

Where Specific Column Value - returns 3 Where value range - returns 105 records

records WHERE the diagnosis is equal to WHERE the claim payment was between

V16.3 $100 and $200

SFLECT * SELECT *

FROM tblClaims FROM tblClaims

WHERE Diagnosis = 'V16.3' WHERE (Paid AS MONEY) > 100
AND (Paid AS MONEY) < 200

Note: the Paid column was uploaded in a text formats
and therefore needs to be converted to a numeric
data type in order to be compared to the desired

numerical range

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Querying basics: GROUP BY & HAVING

* The GROUP BY clause is used to return unigue records (no duplicates) across columns
selected

— GROUP BY statements are different from using SELECT DISTINCT because it allows
aggregation functions (e.g. counts, sums, etc.)

* The HAVING clause can only be used in conjunction with GROUP BY. It acts as an
additional WHERE clause for the results of a GROUP BY statement or the results of any
aggregation functions used Iin conjunction with the grouping

GROUP BY with count - returns 11 unique GROUP BY with Count and HAVING criteria -
records and the counts of occurrences for returns 2 of the unique records from the
each combination of records in the original original query based on additional filtering
data set from the HAVING clause
SELECT Gender, ProviderType SELECT Gender, ProviderType
, (*) AS Counts , (*) AS Counts
FROM tblClaims FROM tblClaims
GROUP BY Gender, ProviderType GROUP BY Gender, ProviderType
HAVING ProviderType = '246'
AND (*) >= 5

INTRODUCTION TO SQL DATA SOCIETY © 2017/

19

Querying basics: aggregation

o Agoregate functions are used to summarize data by rolling up a set of data
items into a single item (or multiple line items when using “GROUP BY’)

» SQL aggregation functions include:

— MIN
MA X -—-Aggregating on an entire table
SELECT (Cash Balance) AS 'MIN', (Cash Balance) AS 'MAX'
__:S[Jba tbLﬁaSh_babnces , (Cash Balance) AS 'SUM', (Cash Balance) AS 'AVG'
y (Cash Balance) AS 'COUNT'
Group Cash_Ba|ance FROM #tbl_caSh_balanceS \
— AVG A 20 MIN MAX SUM AVG COUNT
B 50 -—-Aggregating by groups 20 120 320 64 5
— COUNT B 100 SELECT [GROUP]
D 120 , (Cash Balance) AS 'MIN', (Cash Balance) AS 'MAX'
£ 30 , (Cash Balance) AS 'SUM', (Cash Balance) AS 'AVG'
, (Cash Balance) AS 'COUNT'
FROM #tbl cash balances ~\\\\‘k
GROUP BY [GROUP] GROUP MIN MAX SUM AVG COUNT
A 20 20 20 20 20

50 100 150 /5 2

B
D 120 120 120 120 120
E

30 30 30 30 30

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Querying basics: sorting data

e The ORDER

— Query results can be sorted by one or more fields
— Using ASC or DESC after a field explicitly sorts the results in ascending or descending

order, respectively

BY query statement is used to sort query results

* When there is no explicit reference the sorting defaults to ascending

tbl cash balances

Group Cash_Balance

A 20
50
100

B
B
D 120
E 30

INTRODUCTION TO SQL

-—-Sort Ascending

SELECT [GROUP], [Cash Balance] m——————
FROM #tbl cash balances

ORDER BY [Cash Balance]

—-—-Sort Descending

SELECT [GROUP], [Cash Balance] —
FROM #tbl cash balances

ORDER BY [GROUP] DESC

DATA SOCIETY © 2017/

Group Cash_Balance

20

30

50

100 Note that only

O || |m|>

120 columns explicitly

called will be sorted

Group Cash_Balance
30
120

suiesl (Whinn

>

100

20

21

Querying basics: saving results

e Saving results: If query results need to be saved for later reference or analysis
there are several methods to save those results:
— Exporting results (save results as a .csv file or copy results into a spreadsheet)

— Using the INTO clause to create a permanent or temporary table
« Permanent Table (use “INTO TableName”) - Creates a permanent table that will appear in a

database for all users
« Local Temporary Table (use “INTO #TableName”) - Visible only to their creators during the same
connection to an instance of SQL Server as when the tables were first created or referenced

« Global Temporary Table (use “INTO ##TableName’) - Visible to any user and any connection after
they are created, and are deleted when all users that are referencing the table disconnect from the

Instance of SQL Server

Create Permanent Table Create Local Temporary Table Create Global Temporary Table
SELECT * SELECT * SELECT *
INTO tblClaims copy INTO #tblClaims tmp local INTO ##tblClaims tmp global
FROM tblClaims FROM tblClaims FROM tblClaims

INTRODUCTION TO SQL DATA SOCIETY © 2017/ %

Querying basics: deleting tables

* the DROP

TARLE command Is used to remove tables from a database

 Thiscomm

a reversiple action

and will remove a table from a database permanently and this is not

— BE EXTREMELY CAREFUL when dropping tables in a database (especially permanent

tables)
— |t Is often

streamline

DROP TABLE
DROP TABLE
DROP TABLE

INTRODUCTION TO SQL

perMmMmanent

updates to an analysis

Dropping Tables

tblClaims copy
#tblClaims tmp local
##tblClaims tmp global

nelpful to have a statement to drop temporary tables (and sometimes
analysis tables) prior to the statement creating those tables in a script to

Analysis Use Example

DROP TABLE #tblDemosFranchises
SELECT * INTO #tblDemosFranchises
FROM [dbo].[tblDemosFranchises]

—-—-WHERE Active = 'NA'

—— (50 row(s) affected) (WHERE Active = 'NA')
WHERE Active = 'Y'

-- (60 row(s) affected) (WHERE Active = 'Y')

DATA SOCIETY © 2017/

23

Querying basics: commenting code

Comments are non-executing text statements that should be used to explain queries

* Syntax:
— In line comments - all text after “--“ will not be read by SQL Server when a query is run

SELECT Contract NO -- (Thilis Text will not affect the query)
FROM [tbl DS Sample]

— Block comments - all text between “/* and “*/” will not be read by SQL Server when a query
1S run

SELECT Contract NO
/* (This Text

willl not

affect the query) */
FROM [tbl DS Sample]

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 4

Querying basics: formatting code

-ormatting and commenting SQL code should be done in a consistent ana
repeatable manner to make your code easier to proofread and change

» Poor formatting - lines run off the screen making code hard to read

SELECT Contract NO FROM [tbl DS Sample] WHERE Contract NO = '54345F"

» Good formatting - comments and code are In logical order and easily reaa

—-—Step 1) Look at all Contract numbers i1n scope

SELECT Contract NO
FROM [tbl DS Sample]
WHERE Contract NO = '54345F"

INTRODUCTION TO SQL DATA SOCIETY © 2017/

25

Exercise 3 - writing basic SQL

* Practice writing basic SQL statements

* Remember to use proper formatting and appropriate comments

INTRODUCTION TO SQL DATA SOCIETY © 2017/

26

Questions?

INTRODUCTION TO SQL

I[HAZAQUESTION

e/

DATA SOCIETY © 2017/

2/

Outline

1. Overview of SQL

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

INTRODUCTION TO SQL DATA SOCIETY © 2017/

23

Objectives

1. Understand, manipulate, and alter SQL

7. Learn how to change data In tables

Data types

INTRODUCTION TO SQL DATA SOCIETY © 2017/

29

SQL data types

here are many different data types — Data type examples
in SQL Server; however, there are 3 m“
main data type categories: A123F 1/01/2000
-2,000 Coffee is a great way 2005-07-01
| . ff d 00:00:00:000
» Numeric: contains numbers and can be to start oft your day
q thematical onerations S250.35 Automobile June 16 2013
USECHIT T P 0.0023464 Desk Monday, January 31
| | 2002
» Character: contains strings of text and
can be searched for words and phrases — —xamp\es of data types ——
Or concatenatec
Numeric Data Types Character Data Types Date Data Types
« Date: contains dates and/or times that t ¢ Char © Datetime
H [: date t * Money * Varchar « Date
a.re stored as num er.a owing a¢ vVpe o C Nuarchar T
flelds to also be used In mathematical Necimal

operations

INTRODUCTION TO SQL

DATA SOCIETY © 2017/

30

NULLs

 NULL values are non-existing records in a field. They are different from "blank" or

'zero-length” string values (i.e. ")

— NULL values are excluded from aggregate functions:

» Example: when SQL counts the number of records in the ID Number column (“COUNT (ID Number) ')
It returns a count of 2

— NULL values do not link to one another when they are in a field being used as the

relationship for combining tables

» To locate NULL values, use “IS NULL" (or “:

— Example: "WHE

NULL Values

INTRODUCTION TO SQL

RE

'S NOT NULL’) Iin a WH:

ID Number IS NULL" would return only row 3 in the tab

R

= clause

e below

2 1112

ID_Mumber Category Furchase Date

. BMW 2002-01-01 00:00:00.
NLULL
NLULL 1970-12-07 00:00:00.

000

000

DATA SOCIETY

© 2017

31

CAST a

nd CONVERT functions

e The CAST and CONV.

“RT functions explicitly convert expressions of one data

type Into another

* Function syntax:

— CAST ([FIELD NAME] AS [DATA TYPE

1

)

— CONVERT ([DATA TYPE], [FIELD NAME])

INTRODUCTION TO SQL

——Convert Text Date to a Datetime format
SELECT (date, '1/1/2000")

(Mo column name)

——Convert Text number to a numeric format
SELECT ('1.0023567" AS MONEY)

(Mo column name)

1 | 1.0024

DATA SOCIETY © 2017/

32

Case statements

e Fvaluates a list of conditions and returns one of multiple result expressions
nased on logical statements

» [Types of logical operators

— Simple (equality check)
— Searched (expressions with additional logic such as >, <, AND, OR, etc.)

——Case Statement Syntax

CASE WHEN ... THEN
[WHEN ... THEN]
[ELSE]

END

——Case Statement Example

CASE WHEN Amount 1 > Amount 2 THEN ‘> Amount 1’
WHEN Amount 1 <= Amount 2 THEN ‘<= Amount 1’
ELSE ‘N/A’

END

INTRODUCTION TO SQL DATA SOCIETY © 2017/

93

Case statement example

* Table:

* Query

* Results

INTRODUCTION TO SQL

#tblDemosTeams case ex

Yr Team|D Points
2001 ABC 1024
2015 ABC 910
2017/ BCD 500
SELECT Yr
, leamlD
, CASE

WHEN Points > 910 THEN 'Great Offense'
WHEN Points < 910 THEN ‘Poor Offense'

ELSE "Unknown'
END AS 'Offensive Rating'

FROM #tblDemosTeams case ex

TeamID

Offensive Rating

2001 ABC Great Offense
2015 ABC Unknown =
201/ BCD Poor Offense

DATA SOCIETY © 2017/

Note that the logic in this case
statement does not address a
score of exactly 910 which is why
one result record is ‘Unknown’

Exercise 4 - data types

» Using the tables you imported earlier, practice the syntax for:

— CASE statements

— CAST and CONVERT functions

INTRODUCTION TO SQL DATA SOCIETY © 2017/

35

Changing data

* Data tab

les can also be changed using specific statements that add, remove,

and change data values

* [hese st

atements include:

— INSERT: add records to a table

- delete records from a table

— TRUNCATE: delete all records in a table

- change values

— UPDAT.

INTRODUCTION TO SQL DATA SOCIETY © 2017/

36

Changing data: INSERT statement

INSERT statements add rows from an input source into a table

tbl cash balances

Group Cash_Balance

A 20
. B 50
» Different syntax structures 5 100
D 120
— |dentical tables : 30
. —-—-Insert 1nto the same columns f
VALUES ('G', 90)
— Values *
SELECT 'E', 90 I
tbl cash balances A 20
_ SELECT [GROUP] y [Cash_Balance] B 100
Grup Cash_lance » FROM tbl cash balances insert D 120
B 50 S S0
B 100 --Insert different columns I
E 30 SELECT [GROUP] B NUL L
-—the [Cash Balance] will be populated B NULL
--wlth a NULL value D NULL
E NULL

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Changing data: DELETE Statement

DELETE statements permanently remove rows from data tables
— Removes either an entire table or specified records

Note that DELETE without criteria
will leave a table with columns but

no records
tbl_cash_balances -—-Remove all rows tbl cash balances
DELETE tbl_cash_balances
A 20
S 15000 » --Remove specific Values based on conditional logic tbl_cash_balances
D 120 DELETE tbl cash balances
- S0 WHERE [GROUP]= ‘E’ A 20
B 100
D 120

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Changing data: TRUNCATE statement

TRUNCATE statements remove all rows from a table

— The deletions are
when working wit

tbl cash balances

Group Cash_Balance

20
50

120
30

m|JO |0 | | >

INTRODUCTION TO SQL

——Remove all rows

100 » TRUNCATE TABLE tbl_CaSh_balances —————————————————

not logged making this statement faster than the DELETE statement
N large data sets

tbl cash balances

/

Note that TRUNCATE will leave a

table with columns but no records
similar to DELETE without criteria

DATA SOCIETY © 2017/ 39

Changing data: UPDATE statement

» Upda

condrl

tbl cash bala

es the values either in an entire column or based on specific values using
lonal logic
tbl cash balances
GroupCash Balance
——Remove all rows 150
NCeS 150

Group Cash_Balance

20

UPDATE tbl cash balances —moe——mmmrroro ey
St [Cash Balance] = 150

150
150

m |0 || | >

50

100

m |0 |0 | | >

150
» ——Remove Specific Values based on tb|_ca5h_ba|anceg
120

30

—-—condiltional logic
UPDATE thl _cash_balances m— A 20
SET [Cash Balance] = 150 S i%
WHERE [GROUP] = 'E' D 120

E 150

INTRODUCTION TO SQL DATA SOCIETY © 2017/ A0

Exercise 5 - changing data

» Using the tables you imported earlier, practice the syntax for:
— INSERT
— DELETE
— TRUNCATE
— UPDATE

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Questions?

INTRODUCTION TO SQL

I[HAZAQUESTION

e/

DATA SOCIETY © 2017/

42

Outline

1. Overview of SQL

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

INTRODUCTION TO SQL DATA SOCIETY © 2017/

43

Objectives

 Understand table combination methods

» Recognize types of joins and unions

» Understand table relationships and keys

» Creating views

* Practice writing JOIN & UNION statements in SQL

INTRODUCTION TO SQL DATA SOCIETY © 2017/

44

SQL table combinations

SQL tables can be combined using JOIN or UNION statements to merge columns
or records respectively

JOIN UNION

Al John Smith

-
D First Name Last Name A2 | Samantha | Ripken e
Al John 0 Al Smith Al John Smith 2> | Samantha Niolken
A2 Samantha A2 Ripken A2 | Samantha | Ripken e oo Tohnson
A3 Paul A3 Johnson A3 Paul Johnson A Tavlor Prince
’
A3 Paul Johnson
Ad Taylor Prince
« A JOIN brings columns from 2 different tables into a « A UNION appends records from 2 tables into a combined
combined table table
* The combined table can have more or fewer records than * The combined table will have more records than its
its parent tables depending on both the relationship parent tables assuming no filtering is applied to either
between records on the parent tables and the type of table
join performed
INTRODUCTION TO SQL DATA SOCIETY © 2017

45

Using table aliases

A table alias

individual que

[First]

D First Name

Al John

A2 Samantha

A3 Paul

Tables

v. This makes ¢
required for a query to execu

[Last]

1D Last Name

Al

Smith

A3

Johnson

A4

Adler

-

1D

Al

Result

First

NElnE
John

1D

Al

Last
NEINE

Smith

A3

Paul

A3

Johnson

INTRODUCTION TO SQL

allows a table to be temporarily renamed within the scope of an

ueries easier to read and limits the amount of code
te.

Code

SELECT Elrs . 1D, m [First Name]

Las .ID | Last Name]
FROM [Flrst]

JOIN [Last]

on izt 1o -[Tast] o

VS.
SELECT . First Name]
,.ID , [Last Name]

FROM [Elrst]

JOIN [Last]
ON A.ID = B.ID

DATA SOCIETY © 2017/

46

Joins: code structure

The illustration below demonstrates how the JOIN code relates these tab
complex joins, tables are referred to as LEFT and RIGHT tables based on -

the SQL statement, which will impact the records returned in result sets.

SELECT A.*, B.|[Last Name]

es. In more

‘helr order In

i De——
JOIN [Last] B
Code . .

Result
ID First Name Last Name

Al John Smith
A3 Paul Johnson

ID First Name
John
Samantha
Paul

Tab‘es & [FirSt] Last Name
(LEFT TABLE) Smith
Results

Johnson
Adler

[Last]
(LEFT TABLE)

INTRODUCTION TO SQL DATA SOCIETY © 2017/

The LEFT table The RIGHT table
follows FROM follows JOIN

:

47

Joins: INNER JOIN

An INNER JOIN between 2 tables returns the intersection between those 2 tables

[First] [Last]
1D First Name 1D Last Name
Al John Al Smith
A2 Samantha A3 Johnson
A3 Paul A4 Adler

—

Result

ID First Name Last Name

Al John Smith
A3 Paul Johnson

INTRODUCTION TO SQL

Code

SELECT A.*, B.[Last Name]
FROM [First] A
INNER JOIN [Last] B

ON A.ID = B.ID

Oor

SELECT A.*, B.[Last Name]
FROM [First] A
JOIN [Last] B

ON A.ID = B.ID

DATA SOCIETY © 2017/

Logic

Connection
A+— B

48

Joins: LEFT OUTER JOIN

ALEFT OUT:

R JOIN be

hetween those 2 tables. W

table and the intersection
values are populated in co
Tables
[First] [Last]
Al John Al Smith
A2 Samantha A3 Johnson
A3 Paul A4 Adler

—

Result
ID First Name Last Name

Al John

Smith

A2 | Samantha NULL

A3 Paul

Johnson

INTRODUCTION TO SQL

umns selected from the jol

A

)

‘ween 2 tables returns all records from the table in the initial

ersection NULL

|

ere there 1s no 1IN
ed table.

Code

SELECT A.*, B.[Last Name]

FROM [First] A
LEFT OUTER JOIN [Last] B
ON A.ID = B.1ID

Or

SELECT A.*, B.[Last Name]

FROM [First] A
LEFT JOIN [Last] B
ON A.ID = B.ID

Logic

Connection
A< B
A<= NULL

DATA SOCIETY © 2017 49

Joins: LEFT OUTER JOIN (exclude)

A LEFT OUTER JOIN W
original table with no inte

ith exclusion between 2 tables returns only records from the
section to the initial table.

Code

[First] [Last]
1D First Name 1D Last Name
Al John Al Smith
A2 Samantha A3 Johnson
A3 Paul A4 Adler

—

Result

ID First Name Last Name
A2 | Samantha NULL

INTRODUCTION TO SQL

SELECT A.*, B.[Last Name]

FROM [First] A

LEFT OUTER JOIN [Last] B
ON A.ID = B.ID

WHERE B.ID IS NULL

Oor

SELECT A.*, B.[Last Name]
FROM [First] A
LEFT JOIN [Last] B
ON A.ID = B.ID
WHERE B.ID IS NULL

DATA SOCIETY © 2017/

Logic

Connection

A<+ NULL

50

Joins: RIGHT OUTER JOIN

ARIGHT OUTER JOIN between 2 tables returns all records -

the intersection between those 2 tables. Where there is no in
hopulated in columns selected from the table in the initial table.

rom the joined table ana

cersection NULL values are

[First] [Last] SELECT B.ID, A.[First Name]
, B.lLast Name]
Al John Al Smith FROM [First] N
A3 Joh
2 arantha T A RIGHT OUTER JOIN [Last] B

ON A.ID = B.ID

— or

Result
SELECT B.ID, A.[First Name]
Al John Smith
A3 Paul Johnson 4 B. [Laét Name]]
A4 NULL Adler FROM [First] A

RIGHT JOIN [Last] B
ON A.ID = B.ID

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Logic

Connection

A+ B
NULL+— B

o1

Joins: RIGHT OUTER JOIN (exclude)

A RIGHT OUTER JOIN with exclusion betwee

joined table with no intersection to the initial table.

N 2 tables returns only records from the

Code

[First] [Last]
1D First Name 1D Last Name
Al John Al Smith
A2 Samantha A3 Johnson
A3 Paul A4 Adler

—

Result

ID First Name Last Name
A4 NULL Adler

INTRODUCTION TO SQL

SELECT B.ID, A.[First Name]

, B.[Last Name]

FROM [First] A

RIGHT OUTER JOIN [Last] B
ON A.ID = B.ID

WHERE A.ID IS NULL

Oor

SELECT B.ID, A.[First Name]
, B.|[Last Name]
FROM [First] A
RIGHT JOIN [Last] B
ON A.ID = B.ID
WHERE A.ID IS NULL

DATA SOCIETY © 2017/

Logic

Connection

NULL— B

57

Joins: FULL OUTER JOIN

A FULL OUTER JOIN between 2 tables returns all records from both tables including
thelr intersection.

Tables Code Logic

[First] [Last]
. ID___ First Name | . ID__ LastName |
Al John Al Smith
% St I Tohnson SELECT CASE WHEN A.ID IS NULL
A3 Paul A4 Adler THEN B.1ID

ELSE A.ID

FROM [First] A

Result FULL OUTER JOIN [Last] B
ON A.ID = B.ID
Connection
A2 | Samantha NULL
A3 Paul Johnson AH 3
A4 NULL Adler
A<+— NULL
NULL< B

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 513

Joins: FULL OUTER JOIN (exclude)

A FULL OUTER JOIN with exclusion between 2 tables returns only records from both
tables excluding their intersection.

Tables Code Logic

[First] [Last]
SELECT CASE WHEN A.ID IS NULL
Al John Al Smith
A2 Samantha A3 Johnson THEN B. 1D
A3 Paul A4 Adler ELSE A.ID
END as 1D
- , A.[F1rst Name] , B.[Last Name]
FROM [First] A
Result FULL OUTER JOIN [Last] B
ON A.ID = B.ID C .
A2 | Samantha NULL : OnneCthn
Iy NI Adler WHERE A.ID 1s NULL
OR B.ID IS NULL A \]ULL

NULL+— B

DATA SOCIETY © 2017/ 54

INTRODUCTION TO SQL

Joins: CROSS JOIN

A CROSS JOIN between 2 tables returns every combination of records from one table
to the other.

Tables Code Logic

[First] [Last]
Al ol Al SMith SELECT CASE WHEN A.ID IS NULL
A2 Samantha A3 Johnson
A3 Paul A4 Adler THEN B.1ID
ELSE A.ID
- . SELECT A. [First Name!
Recylt , B. [Laét Name]
FROM [First] A
John Smith CROSS JOIN |[Last] B
Samantha Smith .
Paul Smith
Connection
Samantha |Johnson
Paul Johnson A B
John Adler 1 1
Samantha |Adler
Paul Adler A2 B2

Az Bj

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 55

Joining logic comparison

— |nner Joins — Outer Joins
Inner Join Left Outer Join Right Outer Join
A €=—p B A =P B A =P B
A <> NULL NULL <> B
Cross Join Left Outer Join Right Outer Join
(w/ Exclusion) (w/ Exclusion)
A <> NULL NULL <> B

INTRODUCTION TO SQL

DATA SOCIETY © 2017/

Full Outer Join

'

A €<=—p B
NULL <> B
A €=—p NULL

Full Outer Join
(w/ Exclusion)

'

NULL <> B
A €= NULL

ole

Union statements

» Unions allow records from the same fields to be appended to one another

[Dec 01 Sales]

Tables

[Jan 02 Sales]

Code

SELECT Date, Revenue

12/10/01| $25,000 01/10/02| $35,000 FROM Dec 01 Sales
12/19/01| $120,000 01/19/02| $12,000
12/23/01| $10,000 01/23/02] $110,000 UNION ALL
SELECT Date, Revenue
- FROM Jan_02_5ales
Result Or
12/10/01] $25,000
12/19/01| $120,000 SELECT Date, Revenue
12/23/011 $10,000 FROM Dec_01_Sales
01/10/01| $35,000 - -
01/19/01| $12,000 UNION
RS 0100 SELECT Date, Revenue

INTRODUCTION TO SQL

FROM Jan 02 Sales

DATA SOCIETY © 2017/

S/

UNION vs UNION ALL

Jsing only UNION to combine tables will remove duplicate records between and within
tables, whereas using UNION ALL will combine all records with no further alterations.
Jsing UNION ALL typically runs significantly faster than a UNION unless the dataset Is

small and removing duplicates is necessary.

UNION

[Dec 01 Sales] [Jan 02 Sales]

UNION ALL

[Dec 01 Sales] | Jan 02 Sales]

INTRODUCTION TO SQL

12/10/01| $25.000 01/10/02] $35.000 12/10/01] $25,000 01/10/02] $35,000
12/19/01] $120.000 12/23/01] $10.000
12/19/01| $120.000 12/23/01] $10.000
12/19/01] $120.000 01/19/02] $12.000
_Z/APIOL] S120(000 Qio)joz) 512000 12/19/01] $120.000 01/23/02| $110.000
12/19/01| $120.000 01/23/02] $110.000 ETET TR ’
12/23/01] $10.000 ’

—

Result

12/10/01| $25,000
12/10/01| $25,000 12/19/01| $120,000
12/19/01| $120,000 12/19/01| $120,000
12/23/01| $10,000 12/19/01| $120,000
01/10/01| $35,000 12/23/01| $10,000
01/19/01| $12,000 01/10/01| $35,000
01/23/01| $110,000 12/23/01| $10,000
01/19/01| $12,000

01/23/01| $110,000

DATA SOCIETY © 2017/

Result

Ble

Table relationships

he previous examples use tables with one-to-one relationships; however,

additional considerations should be taken when other table relationships exist.

These relationships include:

* One-to-One - each record in one table will have no more than one
matching record in a second table, and vice versa.

* One-to-Many - each record in one table can have many matching
records In a second table; however, each record In the second table can
only have one matching record in the first table.

. Many -to-Many - records in one table can have many matching records
In a second table, and vice versa.

INTRODUCTION TO SQL DATA SOCIETY © 2017/

o9

One-to-Many relationships

One-to-Many relationships exist when each records in one table may relate to
numerous records In another table.

[Charges] One to Many [Items Purchased]
Account Total Charge Account ltems Purchased

A153 $25 —— A Pizza
B634 $125 \ A153 Bread
3634 Gift Card

B/54 $12
'\ 3754 Soda
B /54 Sports Drink

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Many-to-Many relationships

Many-to-Many relationships exist when records in one table can have many
matching records in a second table, and vice versa.

1 to Many [Feature Mapping] Many to 1
[Car Inventory] Many to Many [Features]

Car Feature ID Feature 1D Feature
Sedan | $25,000 Sedan 1 1 Sun roof
Pickup | $35,000 Sedan 2 2 Manual
Minivan| $29.000 Pickup 2 > 3 Run Flat tires

x Pickup 3 g— 4 4 \Wheel Drive
Dickup 4 W 5 ABS
Minivan 1
Minivan 5 &

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Multiple JOIN statements

* A JOIN statement is limited to two combining 2 tables, but a query can have
Mmultiple JOIN statements. Not all tables have to return a value. The order of

table joins is important (see ordering example on the next slide).

[First] [Last] [PhoneNo]
SELECT A.[ID],
Al John Al Smith Al |555-111-4564 T
A2 Samantha A3 Johnson A2 |555-200-6781 yB. [F1rst Name]
A4 | 555-444-3456 -

- ,A.[Phone]
FROM PhoneNo A
Resylt LEFT JOIN [First] B
ON A.ID = B.I1ID

1D First Name Last Name Phone

Al John Smith 555-111-4564 LEFT JOIN [Last] C
A2 Samantha NULL 555-222-6781 ON A.ID = C.ID
A3 Paul Johnson 555-333-9/54
A NULL Adler 555-444-3456

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Multiple JOIN statements: joins order

he order of joins will dictate what information Is produced in the results. Understanding
the relationships (or lack thereof) between data in tables becomes very important as
tables are combined.
Tables Code Results
SELECT A.Client, B.Invoice, C.PhoneNo
ClientNameS |nvoiceNO FROM ClientNames A .
LEFT JOIN InvoiceNo B
e oM A.ID = B.ID ABD [AGLETI355-675-1900
1 XY/ 1 H123 _ _
5 ABD 4 | B346 LEFT@SOPTNCFO“SNS g et MYR | MZ905 NULL
5 VYR - M7905 . l1en = . i1en
PhoneNo VS VS
SELECT B.Client, A.Invoice, C.PhoneNo
LEFT JOIN ClientNames B XYZ H123 1559-06/-5585
ABD 555-6/5-1900
B NULL B346 NULL

INTRODUCTION TO SQL

LEFT JOIN PhoneNo C
C.Client

ON B.Client

DATA SOCIETY © 2017/

63

Multi criteria joins

Joins can use more than 1 criteria as well as multiple fields to combine data from
tables. The join logic can also use static values.

Tables Code Results
DS _Supply
City State BRENEENNY SELECT A.City, A.State City State Data Data ngar;d
Springfield| Missouri 13 . . Scientists Scientist Filled %
oL TN , A.[Data Scientists] D g
Springfield Virginia 100 , | eman
Vienna Virginia 75 , B.[Data Scientist Springfield| Missouri | 13 NULL | NULL
Springfield| New York 25 Demand] Springfield| Virginia 100 NULL NULL
New York | New York 450 , 1.00 * A.[Data Vienna | Virginia /5 NULL NULL
Scientists] / B.[Data Springfield| New York 25 20 125%
DS_Demand Scientist Demand] as 'Demand New York|New York] 450 200 20%
City State Da’[t;a Scierzjtist Filled &
eman
. : : FROM DS Supply A
Sor!ngf!eld M!SS.OL.JH 22 LEFT JOIN DS Demand B
Springfield| Virginia /3 | -
Vienna Virginia 50 ON A.City = B.City
Springfield| New York 20 AND A.State = B.S5tate
New York| New York 500 AND A.State = '"New York'

INTRODUCTION TO SQL DATA SOCIETY © 2017/ b4

Non-equivalent joins

use non equivalent logic using operators such as >, <, >=, and <=.

Code

SELECT A.Article, B.Text

FROM ArticlePages A

LEFT JOIN Excerpts B
ON A. [Beglinning Page] <= B.Page

AND A. [Ending Page] >= B.Page

Tables
ArticlePages
Article Beginning Page Ending Page
Golf 1 5
Philosophy 6 10
Science 11 25
Excerpts
4 Tiger won again
S | think therefore | am
22 The chemical is inert

INTRODUCTION TO SQL

DATA SOCIETY © 2017/

-arlier examples illustrate equivalent joins (Value 1 = Value 2), but joins can also

Results
Golf Tiger won again
Philosophy | think therefore | am
Science The chemical is inert

63

Self joins

SQL also allows a table to be joined to itself. This can be useful In situations such
as creating cumulative sums over time.

Tables

Financials
1 | $10,000 $ -500
2 | $12000 $-1.000
3 | $11,500 $ 200
4 | $13.000 $ 250
5 | $17.500 $ 400
6 | $14.000 $ 500
7 $ 9.000 $ -100
8 | $20500 $1.000
9 | $12000 $ 1,200
10 | $ 15,000 $ 800
11 | $19.000 $ 950
12 | $21.000 $1.250

INTRODUCTION TO SQL

Code

SELECT A.Period

, SUM(B.Revenue) as Cumulative Revenue
, SUM(B.Profit) as Cumulative Profit
FROM #Financials A

JOIN #Financials B

ON A.Period >= B.Period

GROUP BY A.Period

DATA SOCIETY © 2017/

Results
Period Cumulative Cumulative
Revenue Profit
1 $ 10,000 $ -500
? $ 22,000 $-1,500
3 $ 33,500 $ -1,300
4 $ 46,500 $ -1,050
5 $ 64,000 $ -650
6 $ 78,000 $-150
7/ $ 87,000 $ -250
8 $ 107,500 $ 750
9 $ 119,500 $ 1,950
10 $ 134,500 $ 2,750
11 $ 153,500 $ 3,700
12 $ 174,500 $ 4,950

66

Quality control tips for joins

» Pay attention to the row counts!

— |s the number of rows what you expect?

» A common problem is assuming that a field or combination of fields represents a unigque value. WWhen
that Is not the case you can see an increase in record count.

* Another common issue Is incorrectly setting criteria of a join or WHERE clause and excluding more
records than was originally intended.

— Use simple queri

es on each original table to compare the number of records with given

criteria to the number In the joined table.

— |t is also helpful to use left and right joins Use LEFT and/or RIGHT joins to determine the

overlap between tables a

ne fields you are using to

Na W

nether:

ink the original tables are appropriate.

ne tables themselves are appropriate to combine for an analysis (2 tables can appear to be similar
data from field names but actually contain little to no overlap).

INTRODUCTION TO SQL

DATA SOCIETY © 2017/

6/

SQL views

A SQL view Is a virtual table that is the stored results of an underlying SQL statement. That SQL
statement can be a table or query. Views can be valuable for:

1. Creating simplicity by hiding complex queries from end users of data

2. Creating security through hiding fields with private information and/or preventing changes to base
tables

3. Preventing redundancy & Increase consistency by providing a common source for data users

[First] [Last] CREATE VIEW First Last AS Initial Result
ID First Name ID Last Name SELECT A.*, B.[Last Name] . SRl PN
, | irst Name Last Name
Al John ﬁ% JSr:mth FROM First A SIRLECL , Al John Smith
A2 Samantha OASON FROM First Last | Joh
A3 Paul A4 Adler JOIN Last B — A = Se

ON A.ID = B.ID

l Post Insert Result

INSERT INTO First
SELECT 'A4', '"Jeremy' —_— " onn Sith

. A2 | Samantha | Saratoga
FROM Flrst Last A3 Paul Johnson

A4 Jeremy Adler

=

=

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 68

INSERT INTO Last
SELECT 'A2', 'Satatoga'

Exercise 6 - practice JOINs

* Practice writing JOIN statements

* Remember to use proper formatting and appropriate comments

INTRODUCTION TO SQL DATA SOCIETY © 2017/

69

Questions?

INTRODUCTION TO SQL

I[HAZAQUESTION

e/

DATA SOCIETY © 2017/

/0

Outline

1. Overview of SQL

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

INTRODUCTION TO SQL DATA SOCIETY © 2017/

/1

Objectives

» Understand logical operators in SQL and how they are used

» Understand the use and syntax of various functions

INTRODUCTION TO SQL DATA SOCIETY © 2017/

/2

Logical operators: comparisons

IN CAS:

_ogical operators test whether or r

- Statements, JOTINs, WH.

ot a condition

IS true.

Comparison Operators:

.
R
L d

5 clauses, HAV .

‘NG clat

— “=%and “<>" / "1=" - "Equal to” and “Not Equal to”
—"<"and "<="/">" - "Less than” and "Less than or equal to”
— >"and “>="/ "I<” - "Greater than” and "Grear

— IN - used to match values in a field to a list of values

hey are generally used
Ses.

er than or equal to”

— BETWEEN - used to specify an inclusive range (lower and upper values are searched as

well

— L IKI

as the values in between)

— NOT - used to negate conditions

INTRODUCTION

TO SQL

- - used to identity patterns in character fields

DATA SOCIETY © 2017/

/3

Logical operators: IN

The IN clause Is used to compare a value to a list of possible values.

—Tables —

[Rainbow]

Rainbow Order
Colors

Red

Orange
Yellow
Green
Blue
Indigo
Violet

N[O R WIIN

|[Favorite]

Colors
Blue
Indigo
Orange

Black

INTRODUCTION TO SQL

Code

Example 1 - Field to Field comparison

SELECT *

FROM Rainbow

WHERE [Rainbow Colors] IN (SELECT
[Favorite Colors] FROM Favorite)

Example 2 - Field to list comparison

SELECT *
FROM Rainbow

WHERE [Ralnbow Colors] IN(‘'Blue’, ‘Violet'’)

Example 3 - CASE statement using IN
SELECT *, CASE WHEN [Rainbow Colors] IN (
SELECT [Favorite Colors] FROM Favorite)

THEN ‘Y’ ELSE YN’ END as Fav_Flag
FROM Rainbow

DATA SOCIETY © 2017/

Results

Example 1
Rainbow Colors Order
Orange 2
Blue 5
Indigo 6
Example 2
Rainbow Colors Order
Blue 5
Violet /
Example 3
Rainbow Colors Order Fav_Flag
Red 1 N
Orange 2 Y
Yellow 3 N
Green 4 N
Blue 5 Y
Indigo 6 Y
Violet / N

74

Logical operators: BETWEEN

The BETWEEN clause can be used to determine if a value falls between an upper
and lower bound. For SQL, the BETWEEN statement is inclusive of the upper and

ower bounds (i.e. Between is true when [lower bound]| <= value <= [upper

bound]).
Example 1 - Text Example 1
Date Amount Category
SELECT * FROM Sales 12/1/2015 150 C
WHERE Category BETWEEN ‘B’ AND ‘D’ 1/15/2016 35 D
Sales] 1/31/2016 75 B
Example 2 - Numeric e
12/1/15 | 150 C § xample
12/25/15| 20 A SELECT FROM Sales Date Amount Category
1/15/15 35 D WHERE Amount BETWEEN 25 AND 75 1/15/2016 35 D
1/31/16 | 75 B 1/31/2016 75 B

Example 3 - Dates

Example 3

SELECT * FROM Sales

Date Amount Category
AND '2016-01-20" 1/15/2016 35 D
1/31/2016 /5 B

INTRODUCTION TO SQL DATA SOCIETY © 2017/

/3

Logical operators: LIKE

dCC

The LIKE ¢
dnaerstanc

how to leve

urately

match patter

ause matches patterns of text to a character field. It is important to

rage special characters (“%”, " ", “|", *I", and "*") to

1S.

— Wildcard - characters that substitute for any other character in a string

— Specified patterns -
numbers that shoulc

« %" - used to represent O or more characters and is typically used before and/or after the part of text

being searched for to look for that text anywhere in the character string

«c N

- used to represent 1 character

Brackets “[]" can be used to specify lists or ranges of characters or
be represented by a character in a pattern

- Using “N”" after the opening bracket changes exclude the characters following it (ex. “|“m]” matches

any letter other than “m”)

— Escape - The special characters listed above ("%", * ", “|”, and “]") need to be treated
differently than others. They either need to be included in brackets or placed after an
escape character

INTRODUCTION TO SQL

DATA SOCIETY © 2017/ 76

Logical operators: LIKE examples 1

SELECT
SELECT

SELECT
SELECT

SELECT
SELECT

SELECT
SELECT

SELECT
SELECT

CASE
CASE

CASE
CASE

CASE
CASE

CASE
CASE

CASE
CASE

WHEN
WHEN

WHEN
WHEN

WHEN
WHEN

WHEN
WHEN

WHEN
WHEN

"aabbcc' LIKE '"3bb3s' THEN 'T' ELSE 'F' END
'aabbcc!' LIKE '%a%sc%' THEN 'T' ELSE 'F' END
Example 2 - Using ' " wildcard

'fair' LIKE '_air' THEN 'T' ELSE 'F' END

'lair' LIKE '_air' THEN 'T' ELSE 'F' END
Example 3 - Using '[]' searching

'theatre 7' LIKE '3theat[re] [re] [0-9]"'" THEN

'theater 2' LIKE '3theat[re]|[re] [0-9]"'" THEN
Example 4 - Using '[*]' searching

'theatre X' LIKE '3Stheat[re]|[re] [70-9]'" THEN

'"theater 9' LIKE '3Stheat[re]|[re] [70-9]'" THEN

INTRODUCTION TO SQL

Code

Example 1 - Using '%' wildcard

Example 5 - Using escapes for special characters

LIKE

va[

[

]

[5] 1

] !

THEN
' LIKE 'a\[-\%\ '" ESCAPE '\' then 'TRUE' else 'FALSE' end

'T'

else

VF'

VT'
VT'

'T'
'T'

ELSE
ELSE

ELSE
ELSE

DATA SOCIETY © 2017/

lF'
lF'

END
END

'"F' END
'"F' END

O I

Results

Example 1

\TI
\TI

Example 2

\T/
\T/

Example 3

\TI
\TI

Example 4

\TI
\FI

Example 5

\TI
\TI

//

Logical operators: LIKE examples 2

—Tables —

[txtLog]

1D Note

1 He doesn’t want to give
a 50% cut

2 Cut that out we need
the code

3 Here Is the code
code: 123 tf]

4 How long the code
good for?

5 123-tf won't be good
for too long

6 | think 124 tf will work

too

INTRODUCTION TO SQL

Code

Example 1 - word anywhere in string

SELECT * FROM txtLog
WHERE Note LIKE ‘%codes’

Example 2 - word at end of string

SELECT * FROM txtLog
WHERE Note LIKE ‘%too’

Example 3 - skipping multiple characters

SELECT * FROM txtLog
WHERE Note LIKE ‘%$12%tf%’

Example 4 - skipping single characters and brackets

SELECT * FROM txtLog
WHERE Note LIKE ‘%12 [1tf%’

Example 5 - skipping single characters and caret brackets

SELECT * FROM txtLog
WHERE Note LIKE ‘%12 [~ 1tf%’

DATA SOCIETY © 2017/

O

Results

Example 1

Note
Cut that out we need thelcodel

Here is thelcodellcode:123 tf]

~WIN

How long the[code kkood for?

(O)

Example 2

| think 124 tf will work{tool

Example 3

ID Note

3 Here is the code [codell23 tf

5 | 123-tflwon’t be good for too long

6 | think! 124 tfiwill work too
Example 4

D Note

3 Here is the code [codem

| thinkl 124 tflwill work too

Example 5

5[.23-tflwon't be good for too long

/3

Multiple logical operators

Multiple logical operators can be strung together by relating them with AND or OR
statements.

* AND - used to connect two or more conditions and only returns those rows
meeting all conditions

* OR - used to connect two or more conditions and returns any rows that meet
any of these conditions

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Multiple logical operators examples

DS_Supply
City State Data Scientists
Springfield Missouri 13
Springfield Virginia 100
Vienna Virginia /5
Springfield [New York 25
New York [New York 450
AND OR Combined
SELECT * SELECT * SELECT *
FROM #DS Supply FROM #DS Supply FROM #DS Supply
WHERE City = ‘Vienna’ WHERE City = ‘Vienna’ WHERE State = ‘New York’
State = ‘Virginia’ State = ‘Missouri’ [Data Scientists] > 50
[OR]State = ‘Missouri’
State Data Scientists City State Data Scientists City State Data Scientists
Vienna /5 Springfield Missouri 13 Springfield Missouri 13
Vienna Virginia /5 New York [New York 450

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Functions

* Functionr
and retu
within tr

« SQL has functions that a
also operate e
lumn.

types anc

single co

S I

RARE

SQL Se
value o

VE

Cadre s

Lorec

" Vc

lues. |

e context of a query.

Code

N SQ

e designed to work w
ither across columns ir

_ most functl

programs tn

d

O

ith ez

t can be

NS are st

nassed parameters

-uctured to work

ch and/or multiple data

a single row or across rows in a

17 -unction
—-—-Aggregating on an entire table ‘ Dal’amGter

N', (Cash Balance) AS 'MAX'

SELECT

(Cash Balance) AS 'MI

(Cash Balance) AS

’ (Cash Balance) AS '
FROM tbl cash balances

INTRODUCTION TO SQL

Results

'SUM',

COUNT'

(Cash Balance) AS 'AVG'

................

MIN MAX SUM AVG COUNT
1 120 (120 320 &4 5

DATA SOCIETY © 2017/

Returned value

31

Functions: cross column vs. aggregate

* Cross column functions combine data in the same record from different

columns

» Aggoregate functions combine data in multiple rows from the same columns
* The two function types can be used together; however, the syntax needs to be

precise

Financials

Period Revenue Costs
1 y
5 y
3 y
4 y
5 y
6 $1
¥ SL
Tot Revenue Tot Costs
$ 78,000 $ 2,850

INTRODUCTION TO SQL

RRRRN

Profit

——Cross Column function: Periodic Profit
SELECT Revenue - Costs AS ‘Profit'
FROM Financials

—-—-Aggregate function

SELECT (Revenue) AS ‘Tot Revenuel
(Costs) AS ' Tot Costs'

FROM Financilals

——Cross Column: count i1f Profit > 15k
SELECT (CASE WHEN Revenue - Costs > 15000

THEN 1 ELSE O END) AS ‘Periods GT 15K

FROM Financials

DATA SOCIETY © 2017/

32

Functions: math

* Cross column functions:

— Numeric data types support all basic math functions such as addition (“+"), subtraction
(“-"), multiplication (**"), division (“/"), and exponents (“POWER()")

— Cross-column also includes mathematical expressions such as absolute value (“ABS()”),
rounding (“ROUND()") and random number generation (“RAND()")

» Aggregate Functions:

— SQL also supports aggregate math functions such as counts (“COUNT()"), sums (“SUM()"),
maximum values (“MAX()"), and averages (“AVG()")

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Functions: text

* Cross-column functions:

— Text data types suppo
 Extract part of a string:

* Finding the position of text anc

[.-

L d Vd

-F 1),

RIGH|

rlety of functions to manipulate text strings including:

(), SUBSTRING()

lengt

N of string: PATINDEX(), CHARINDEX(), LEN()

» Removing spaces from the ends of strings: LTRIM(), RTRIM(), TRIM()
» Combine strings: CONCAT(), “+"

» Aggregate Functions:

— Text data only suppor
maximum alphanumer

INTRODUCTION TO SQL

s several aggregate functions including counts (“COUNT()"),
c values ("MAX()"), and minimum alphanumeric values (“MIN()")

DATA SOCIETY © 2017/

34

Functions: dates

* Cross-column functions:

— Date data types support a variety of functions to manipulate dates including:
« Get current date and/or time: CURRENT TIMESTAMP, GETDATE(), SYSDATETIME()
« Return date and/or time parts: DAY(), MONTH(), YEAR(), DATENAME(), DATEPART()
« Create date and/or time from parts: DATEFROMPARTS(), TIMEFROMPARTS()
« Date math: DATEDIFF(), DATEADD()

— Date data only supports several aggregate functions including counts (“COUNT()"),

maximum alphanumeric values (“MAX()"), and minimum alphanumeric values (“MIN()”)
* This limitation can be avoided because dates can be converted to a numeric data type for additional

calculations. After calculations (averages, variances, etc.) are performed on a numeric date they can be
converted back knowing that Microsoft's base date (numerically zero) is 1/1/1900.

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Functions: NULLs

* There are some useful functions that assist with dealing with incomplete data
sets that contain NULL values:

— |ISNULL() - replaces NULL with the specified replacement value
— COALESCE() - returns the first non-null expression among its arguments

— Tables— Code Results

ISNULL
tblSales] —--Manually substitute for NULL values Date SalesAmt
Date SalesAmtl SalesAmt? SELECT Date, (SalesAmtl, 0) AS SalesAmt 12/1/15 150
12/1/15 150 75 PO Eblseles Lo/l :
12/25/15 NULL 50 zéiﬁz 305
1/15/16 35 NULL -—-Take first non-NULL values
1/31/16 NULL 65 SELECT Date, (SalesAmtl, SalesAmtZ2) AS SalesAmt COALESCE
FROM tblSales BE|E SalesAmt
12/1/15 150
12/25/15 50
1/15/15 35
1/31/16 65

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Exercise 7 - logic & functions

» Using the tables you imported earlier, practice the syntax for:

— Logical operators

— Cross-column and aggregate functions
» Math
* Jext
« Date

INTRODUCTION TO SQL DATA SOCIETY © 2017/

3/

Questions?

INTRODUCTION TO SQL

I[HAZAQUESTION

e/

DATA SOCIETY © 2017/

33

Outline

1. Overview of SQL

2. Working with data using SQL statements

3. Manipulating tables using SQL

4. Logical and mathematical operations and functions

5. SQL Server best practices

INTRODUCTION TO SQL DATA SOCIETY © 2017/

39

Objectives

» Understand common data problems

» Review Quality Control (QC) tips

» Review Organizational tips

» Understand ways to improve performance and efficiency

INTRODUCTION TO SQL DATA SOCIETY © 2017/

70

common data problems

e Unreliable or unusable data

— Incomplete data

CCN REPORTEDDATE

. Dup”(:ate data 13009976 1/23/2013
13009981 1/23/2013 9:46:00 AM DAY

REPORTEDTIME SHIFT OFFENSE METHOD
NULL OTHERS

MOTOR VEHICLE OTHERS

THEFT
. 13009981 1/23/2013 92:46:00 AM DAY MOTOR VEHICLE OTHERS

— |nconsistent formats THEFT
13009981 1/23/2013 92:46:00 AM DAY MOTOR VEHICLE OTHERS

THEFT

o Inaccu rate ﬂt@ rp retahons NULL 13009986 1/23/2013 11:25:00 AM DAY THEFT F/AUTO
. NULL 00998 0 12:30:00 PM DAY THEFT/OTHER

— What do the values in OFFENSE 13009990 01232013 10:54:00 AM DAY MOTOR VEHICLE OTHERS

5 THEFT

and METHOD really mean: 13009991 2013-1-23 23:57:00 DAY BURGLARY OTHERS

0007 2013-1-23 12:13:00 PM DAY THEFT/OTHER KNIFE

13010012 1/23/2013 18:34:00 DAY THEFT F/AUTO OTHERS

. T 13010013 1/23/2013 12:31:00 PM DAY THEFT/OTHER KNIFE

Join issues 13010014 5 2500 PN DAY THEFT/OTHER OTHERS

— NULLs not accounted for
— Wrong columns used
— Table relationships not considered

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 01

QC: preventing data problems

ne following are quality control (QC) steps to detect and prevent common data
problems:

* Reconcile data source totals
— Compare record counts and sum totals of data sets used to source documents
— Reconcile with other source documents
— Compare detaill and summary data sets
— Account for all records

o Perform frequency distributions on the data
— Check for incorrectly excluded or included data
— Check for invalid entries

— Distinguish between NULL and blank fields

INTRODUCTION TO SQL DATA SOCIETY © 2017/

QC: preventing data problems

* Check for reasonableness
— Check that fields provide the correct data for your analysis

— Check that amounts fields are appropriate (i.e. 5000 could be $5,000 or $50 if there is an
implied decimal)

— Ensure that fields are logically related to each other and carefully compare fields for JOINS

— In transactional data check for adjustments/corrections or reverse values that may impact
totals or the meaning of the data

o [ookup table verification
— Determine valid values list for lookup tables
— Compare valid values to data values used
— |dentify missing values

o Query result tests
— Evaluate whether or not JOIN results meet expectations
— Verify the type of join used was correct
— Determine if results contained too many or few records

INTRODUCTION TO SQL DATA SOCIETY © 2017/

QC: building quality into analysis

he diagram below illustrates that quality control (QC) must be built into an
analysis from beginning to end.

Data Sources Analysis Platform Reporting

Source Data I
Tables _I
Reporting Data
/ Results
Imported
D

ata Tables
Analysis
Source Data
Tables 1= Code
_4/

“ Reconciliations

e ANalysis Process

‘ Reasonableness Checks

INTRODUCTION TO SQL DATA SOCIETY © 2017

94

QC: import/export processes

 When importing data into SQL from files or other databases, there is a significant risk
of losing data through conversion errors

* [t Is a good practice to import a raw table with fields in a text format first, and create a

SQL script to convert the data types in a new table to assist with reconciling to source
data inputs

i (o ((—
Source Data 5| Import Raw Tables IR Tt e it Formatted V S Source Data SQL Import & Formatted
Tables | : f ' Tables

(Tables Tables Transform d

II Adam | 5/15/2016 Adam | 5/15/2016 00:00:00 II Adam | 5/15/2016 00:00:00
SOL_:_rC;’I 2B » Beth | 2/15/2016 » Beth | 2/15/2016 00:00:00 SOL_:_rC;’I Data || » Beth | 2/15/2016 00:00:00
ables__J Bell | 20160120 Bel NULL avies ___ig Bel NULL
S— Ernest | 01202016 Ernest NULL aa——— Ernest NULL

Note: Importing and then transforming data
types allows simple reconciliation facilitates
correction of conversion errors

Note: without a complete import there is no
straight forward way to know if NULLs in a data
set are true NULLSs or conversion errors

INTRODUCTION TO SQL DATA SOCIETY © 2017/

95

Organization: commenting

» Code should always be commented to the extent that a non-SQL user can
understand the analysis process, and for SQL users to repeat the process

* Syntax:
—In-line comments - all text after “--“ will not be read by SQL Server when a query is run

-— Selecting all contract numbers for comparison
SELECT Contract NO FROM [tbl DS Sample]

— Block comments - all text between “/*“ and “*/” will not be read by SQL Server when a
query Is run

SELECT Contract NO
/* These contract numbers represent the population
of non- performing loans */

FROM [tbl DS Sample]

INTRODUCTION TO SQL DATA SOCIETY © 2017/

Organization: formatting

Consistent code formatting makes

o Put keywords in UPPER CAS
— SELECT, FROM
— SUM, AVG
— CASE, CAST, CONV.

L]

RT

» Use tabs to align blocks of code

it easier to read and edit. This saves hours of

time spent trying to understand what Is happening If the code Is reviewed later.
ere are a few suggestions for SQL formatting:

—-—Create Greater than 2000 flag
SELECT A.Contract NO
, CASE WHEN Origination Year > 2000 THEN ‘Y’
ELSE ‘N’ END AS GT 2000 Flag
INTO #TEST
FROM [tbl DS Sample] A
LEFT JOIN [tbl DS SampleZ] B
ON A.Contract NO = B. Contract NO
WHERE A.Contract NO IS NOT NULL

—-View records from #Test
SELECT *

* Put commas at the beginning of a line “ROM ETEST

INTRODUCTION TO SQL

DATA SOCIETY © 2017/

77/

Organization: naming conventions

o Use consistent naming conventions for SQL tables, views, and other objects

e Be consistent when
— |f there are many ana

renaming fields wit

vses relying on a fielc

Nin a table/proj

iINn a table and th

severely interrupt other processes before t

organization

* Do not use spaces In names

ect
e name changes, it could

ne proper changes are made across a team or

— When spaces are used in a table or column names, it requires brackets (“|Field Name]”)
around the name to be properly read in SQ

INTRODUCTION TO SQL

L

DATA SOCIETY © 2017/

73

Organization: saving SQL scripts

* Follow your office or team rules for creating and organizing scripts

* Each script should be modular and relate to one analysis or function

* Version control is also very important and ac
scripts can be very helpful when an analysis

* For example a project named Surfside may h

ding version descrip

‘lons and dates to

needs to be revisitec

ave files saved like:

— Surfside_Data_Prep vO01_20170225.sqgl = scripts related to preparing a table or data set for

analysis

— Surfside_Review_v01 20170315.sqgl = scripts such as frequency distributions that describe the

data

— Surfside_Data_Analysis_ vO1 20170322.sgl = scripts related to the project deliverable

INTRODUCTION TO SQL DATA SOC

IETY © 2017/

79

Performance: argument order

Fastest Try to use a leading character wi
(ex. LIKE 'm%' instead of LIKE

Use LIKE Iinstead of SUBSTRING with =
Slowest

Se careful with OR
f multiple ANDs, put least likely condition

OR fIrst

AND f equally likely, put least complex
condition first

INTRODUCTION TO SQL DATA SOCIETY © 2017/

100

Performance: query structure

» Restrict result sets by using WHERE or only selecting the columns needed

» Use WHERE with HAVING when appropriate

« ORDER BY Is Inefficient; sort results in a separate step

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 101

Performance: space efficiency

» Backup your database, but don't store excessive copies of the backup

 Choose between temp tables and views

« Use appropriate field types (avoid using NVARCHAR)

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 102

Questions?

I[HAZAQUESTION

e/

INTRODUCTION TO SQ.L DATA SOCIETY © 2017/ 103

Appendix:
Bridging data between SQL and R

DAIACO LY

Bridging R and SQL

* R can be used to extract and write data to a SQL database

* This allows analysis results sets and interim data sets to easily accessed from a
central location

Data Storage
& Aggregation

Export / Import
for Storage .
Export / Import > R Analysis
for Analysis

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 105

ODBC Connection

e R can connect to SQL using an Open Database Connectivity (ODBC) connection

— ODBC is a protocol that allows for a connection between data sources such as Microsoft SQL
Server.

 The RODBC package uses the odbcDriverConnect() function to create an ODBC
connection that R can use to query a database

< ODBC Connection > R Analysis

driver={SQL Server} indicates that we are
/ connecting to a MS SQL server
SQL Con = odbcDriverConnect (paste ('driver={S0L Serverj'/' The server you would like to connect to should be

, ' ;server=W530THINKPAD\\SQLEXPRESS entered here after "server=

':database=Data Society SOI ClLass' «——— [he database within the server that you would like
~ o _ to connect to should be entered here after

';trusted connection=true', sep = "' ; «
’ a ’ P))\ database=

true indicates that windows .au‘thentication will be
used for server access permissions

Data Storage
& Aggregation

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 106

Create a list of SQL tables

» Using the ODBC connection and the sglQuery() function from the RODBC
package, we can execute the SQOL command SP_tables which will store a
dataframe containing all SQL tables and views In a database.

Execute and store query

SQL Table List = sglQuery (SQL Con """ SQL_Con is the ODBC connection previously defined

' QP 1 s S P taples is g function in SQL server that returns all
oP tablest) database tables and Views (system and otherwise)

Subset the data set
SQL Table List = SQL Table List[SQL Table ListSTABLE OWNER != 'sys'
& SQL Table List$TABLE OWNER != 'INFORMATION SCHEMA',] I
\ Remove System tables and Information schemas

that would not typically be part of your analysis

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 10/

Import SQL tables (individual)

» Using the O

containing all the results of

D

BC connection and t

package, we can execute a SE|

ne sglQuery() function from

:(:__
that query.

Execute and store SELECT queries

tblClaims = sglQuery (SQL Con, 'select * from tblClaims

\—'—I

/)]

New Function

Dataframe

INTRODUCTION TO SQL

ODBC SQL
Connection Query

DATA SOCIETY © 2017/

query which will store a da

")

the RO
taframe

D)

SC

108

Import SQL tables (bulk)

» Using a for loop the ODBC connection and the sglQuery() function from the
RODBC package, we can execute multiple SELECT queries to create
dataframes for all (or a selected list) of tables and views in a database.

Import all tables

for(i in 1l:nrow(SQL_Table List)) ——* get the schema name for each record to

schema = as.character (SQL_Table List3TABLE OWNER[1]) ensure the right object is being selected
tbl name = as.character (SQL Table List$TABLE NAME [i]),‘\\\ from the database

tbl 1mport loop = sglQuery (SQL Con .
. paste ('select * from oet the table name for querying each

, schema table in the database for import

; Uot “——— ¢ code to import SQL table into R
, thbl name

_ * code to assign each table imported an
,Sep o)) . .
. o appropriate variable name based on both
assign (paste(schema,
bl name . sep = ' the schema and the table name from the
N SQL datab
, tbl import loop) (? dld ase |
print (paste (schema, ' ', tbl name ,sep = '')) «— ¢ Print tables imported in the console to

) track progress while loop runs

INTRODUCTION TO SQL DATA SOCIETY © 2017/ 109

Export data to SQL

» Using the ODBC connection and either the sglSavel() -
DBC package, we can save a da

function from the RO

append the data to an existing data table from R.

Export dataframe to SQL table

rownames = FALSE

~ ~ ~ ~

DivisionCode = "'C'"
DivisionName = "'Central'"

INTRODUCTION TO SQL

tbl crime i1incidents 2013
tablename = "tbl crime incidents 2013 R export"

4___———————"—________—-__——_-.

—

append = TRUE) 4——-____________________________________

Export values to SQL table

}m_.

sqlQuery (SQL Con 4______—————————————--—-—-__________—_____-.

, paste('INSERT INTO tlkaemosDivisions_R_export‘*"——__.
SELECT ',DivisionCode, ', ',DivisionName, sep = "'"))

DATA SOCIETY © 2017/

‘unction or the sglQuery()
a Into a new SQL table or

SQL connection created earlier in the code
R dataframe being exported

The name of the table being created and/or
appended to

excludes rownames from being exported as a
column in the new SQL table

TRUE - if the table already exists then the records
from this data frame will be appended to the
existing table

Define values
SQL connection created earlier in the code

Use INSERT statement with variable values to
append data to a SQL table

110

Close ODBC connections

* |[tisabestp

INTRODUCTION TO SQL

r

done access|
of your SQL database. We use the f
from the RO

ng the databases to hel

DBC package to close

O

actice to close an ODBC con

ur

ctl

maintain t

nection (or connections) after you are

ne performance and availability

ons OC

Close connections

M o C
odbcClose (SQL Con)
odbcCloseAll () @ . C

bcClose() and

ose a specific O

DATA SOCIETY © 2017/

odbcCloseAll()

individual or all connections respectively.

DBC connection

ose all ODBC connection

111

Questions?

I[HAZAQUESTION

e/

INTRODUCTION TO SQ.L DATA SOCIETY © 2017/ 112

